K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2017

Đáp án B

Do y = x cos x  nên y ' = cos x − x sin x ⇒ y ' ' = − sin x − sin x − x cos x = − 2 sin x − x cos x  

Như thế 2 cos x − y ' = 2 x sin x ,     x y ' ' + y = − 2 x sin x  

Vậy 2 cos x − y ' + x y ' ' + y = 0

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Ta có: \(y = \cos x\)

\(y\left( { - x} \right) = \cos \left( { - x} \right) = \cos x = y\)

Suy ra hàm số \(y = \cos x\) là hàm số chẵn

Vậy ta chọn đáp án C

7 tháng 4 2017

5 tháng 9 2016

a) Sai , vì chẳng hạn trên khoảng \(\left(-\frac{\pi}{2};\frac{\pi}{2}\right)\) , hàm số y = sinx đồng biến nhưng hàm số y = cosx không nghịch biến .

b) Đúng , vì nếu trên khoảng J , hàm số y = sin2x đồng thời thì với x1 , x2 tùy ý thuộc J mà x1 < x2 , ta có sin2x1 < sin2x2 , từ đó

cos2x1 = 1 - sin2x1 > 1 - sin2x2 = cos2x2 , tức là hàm số y = cos2x nghịch biến trên J .

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Biểu thức \(\frac{{1 - \cos x}}{{\sin x}}\) có nghĩa khi \(\sin x \ne 0\), tức là \(x \ne k\pi \;\left( {k\; \in \;\mathbb{Z}} \right)\).

Vậy tập xác định của hàm số đã cho là \(\mathbb{R}/{\rm{\{ }}k\pi {\rm{|}}\;k\; \in \;\mathbb{Z}\} \;\)

b) Biểu thức \(\sqrt {\frac{{1 + \cos x}}{{2 - \cos x}}} \) có nghĩa khi \(\left\{ {\begin{array}{*{20}{c}}{\frac{{1 + \cos x}}{{2 - \cos x}} \ge 0}\\{2 - \cos x \ne 0}\end{array}} \right.\) 

Vì \( - 1 \le \cos x \le 1 ,\forall x \in \mathbb{R}\)

 Vậy tập xác định của hàm số là \(D = \mathbb{R}\)

27 tháng 6 2017

Đáp án đúng : D