Trong các dãy số sau, có bao nhiêu dãy là cấp số cộng:
a) Dãy số u n với u n = 3 n
b) Dãy số v n với v n = sin n π
c) Dãy số w n với , với w n = n 5 − 2 , với n ≤ 10
d) Dãy số t n với t n = 2 − n
A. 1
B. 2
C. 3
D. 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án đúng là: D
Dãy số (un) được xác định bởi: u1 = 3 và un = \(\frac{1}{3}\).un-1 với mọi n ≥ 2 là cấp số nhân với số hạng đầu u1 = 3 và q = \(\frac{1}{3}\).
Chọn C
1. u n = 3 n + 1 2. u n = 4 − 5 n
3. u n = 2 n + 3 5 4. u n = n + 1 n
* Xét dãy số: u n = 3 n + 1
Ta có:
u n + 1 − u n = 3 ( n + 1 ) + 1 − 3 n − 1 = 3
Dãy số này là cấp số cộng có công sai d= 3.
* Xét dãy số u n = 4 − 5 n .
Ta có:
u n + 1 − u n = 4 − 5 ( n + 1 ) − ( 4 − 5 n ) = − 5
Dãy số này là cấp số cộng có công sai d = -5
* Xét dãy số u n = 2 n + 3 5
Ta có:
u n + 1 − u n = 2 ( n + 1 ) + 3 5 − 2 n + 3 5 = 2 5 .
Dãy (un) là cấp số cộng có công sai d = 2 5
* Xét dãy số u n = n + 1 n
Ta có:
u n + 1 − u n = n + 1 + 1 n + 1 − n + 1 n = ( n + 2 ) . n − ( n + 1 ) 2 n . ( n + 1 ) = − 1 n ( n + 1 ) ⇒ ( u n )
không là cấp số cộng
Xét câu A, hiển nhiên khi \(n\rightarrow+\infty\) thì \(a_n=\sqrt{n^3+n}\rightarrow+\infty\) nên dãy (an) không bị chặn.
Ở câu C, lấy n chẵn và cho \(n\rightarrow+\infty\) thì dãy (cn) cũng sẽ tiến tới \(+\infty\). Do đó dãy (cn) cũng là 1 dãy không bị chặn.
Ở câu B, ta xét hàm số \(f\left(x\right)=x^2+\dfrac{1}{x}\) trên \(\left[1;+\infty\right]\), ta thấy \(f'\left(x\right)=2x-\dfrac{1}{x^2}\) \(=\dfrac{2x^3-1}{x^2}\) \(=\dfrac{x^3+x^3-1}{x^2}>0,\forall x\ge1\) . Do đó \(f\left(x\right)\) đồng biến trên \(\left[1;+\infty\right]\) và do đó cũng đồng biến trên \(ℕ^∗\). Nói cách khác, (bn) là dãy tăng . Như vậy, nếu bn bị chặn thì tồn tại giới hạn hữu hạn. Giả sử \(\lim\limits_{n\rightarrow+\infty}b_n=L>1\). Chuyển qua giới hạn, ta được \(L=\lim\limits_{n\rightarrow+\infty}\left(n^2+\dfrac{1}{n}\right)=+\infty\), vô lí. Vậy (bn) không bị chặn trên.
Còn lại câu D. Ta thấy với \(n\inℕ^∗\) thì hiển nhiên \(d_n>0\). Ta thấy \(d_n=\dfrac{3n}{n^3+2}=\dfrac{3n}{n^3+1+1}\le\dfrac{3n}{3\sqrt[3]{n^3.1.1}}=1\), với mọi \(n\inℕ^∗\). Vậy, (dn) bị chặn
\(\Rightarrow\) Chọn D.
Chọn A
Trong bốn dãy số chỉ có yn=n/(n+1) < 1 nên có 1 dãy bị chặn trên
Đáp án D
Các dãy số (hữu hạn hoặc vô hạn) với số hạng tổng quát có dạng an+b ( a, b là hằng số) đều là một cấp số cộng với công sai d = a