K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2016

Giả sử 3n+4 là SCP => 3n+4=a2

Mà 3 nâng lên lũy thừa bao nhiêu cũng có tận cùng là 1 số lẻ, mà số lẻ+số chẵn=số lẻ nên a2 là số lẻ

=> a là số lẻ

=> a có dạng 4k+1 hoặc 4k+3

+) Nếu a=4k+1 thì a2=(4k+1)2=(4k+1)(4k+1)=16k2+8k+1=8m+1

+) Nếu a=4k+3 thì a2=(4k+3)2=(4k+3)(4k+3)=16k2+24k+9=8m+1

Vậy a2=8m+1          (1)

Mặt khác, nếu n chẵn thì 3n+4=32k+4=9k+4=(8+1)k.3+4=8h+1+4=8h+5    (trái với 1)

nếu n lẻ thì n=2k+1=>3n+4=32k+1+4=9k.3+4=(8+1)k.3+4=(8k+1).3+4=8h+1      (trái với 1)

  Vậy 3n+4 không thể là SCP

tick nha!

làm ko bt đúng hay sai:

giả sử 3^n+4 là scp=>3^n+4=a^2

mà 3 nâng lên lũy thừa bao nhiêu cũng có tận cùng là 1 số lẻ, mà số lẻ +số chẵn=SL nên a^2 là số lẻ, =>a là số lẻ

=>a có dạng 4k+1 hoặc a có dạng 4k+3

+) nếu a =4k+1 thì a^2=(4k+1)^2=(4k+1)(4k+1)=16k^2+8k+1=8m+1

+) nếu a=4k+3 thì a^2=(4k+3)^2=(4k+3)(4k+3)=16k^2+24k+9=8m+1

vậy a^2=8m+1(1)

mặt khác, nếu n chẵn thì 3^n+4=3^(2k)+4=9^k+4=(8+1)^k+4=8h+1+4=8h+5)(trái với 1)

nếu n lẻ thì n=2k+1=>3^n+4=3^(2k+1)+4=9^k.3+4=(8+1)^k.3+4=(8k+1).3+4=8h+1(trái với 1)

vậy 3^n+4 ko thể là scp

12 tháng 1 2016

3n + 4 và số nào không thể cùng là các số CP 

AH
Akai Haruma
Giáo viên
28 tháng 7 2024

Lời giải:

Nếu $n$ lẻ: 

$3^n+4\equiv (-1)^n+4\equiv (-1)+4\equiv 3\pmod 4$

$\Rightarrow 3^n+4$ không phải số chính phương.

Nếu $n$ chẵn. Đặt $n=2k$ với $k$ nguyên.

$3^n+4=3^{2k}+4=9^k+4\equiv 1+4\equiv 5\pmod 8$

Mà 1 scp khi chia 8 dư 0,1,4 nên $3^n+4$ không phải scp.

Vậy $3^n+4$ không là scp.

6 tháng 1 2016

vì 3 mũ bao nhiêu cũng là số lẻ mà số lẻ nào + với số chẵn cũng = số lẻ nên ko bao giờ bình phương của 1 số = số lẻ

26 tháng 8 2019

Bài 1:

a ) Ta có :  A là tổng các số hạng chia hết cho 3 => A \(⋮\)3                            

                  A có 3 không chia hết cho 9 => A không chia hết cho 9

=>  A \(⋮\)3 nhưng không chia hết cho 9

=> A không phải là số chính phương

Bài 2:

Gọi 2 số lẻ có dạng 2k+1 và 2q+1 (k,q thuộc N)

Có : A = (2k+1)^2+(2q+1)^2

           = 4k^2+4k+1+4q^2+4q+1

           = 4.(k^2+k+q^2+q)+2

Ta thấy A chia hết cho 2 nguyên tố

Lại có : 4.(q^2+q+k^2+k) chia hết cho 4 mà 2 ko chia hết cho 4 => A ko chia hết cho 4

=> A chia hết cho 2 nguyên tố mà A ko chia hết cho 4 = 2^2

=> A ko là số  chính phương

=> ĐPCM