Cho hình chóp S.ABC. Gọi M, N lần lượt là trung điểm của SA và BC. P là điểm nằm trên cạnh AB sao cho A P A B = 1 3 . Gọi Q là giao điểm của SC với mặt phẳng (MNP). Tính S Q S C
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A.
Phương pháp : Dựng điểm Q và áp dụng định lý Menenaus.
Cách giải : Gọi I là giao điểm của PN và AC. Suy ra Q là giao điểm của IM và SC.
Áp dụng định lý Menenaus cho tam giác SAC ta có :
Đáp án A
Gọi H là hình chiếu của S lên mặt đáy A B C suy ra S H ⊥ A B C thì H là trung điểm của AC.
Ta có:
S H = 9 − 2 = 7 ; K = P Q ∩ A B ; A B = A C = 2
Dựng P E / / A B ta có:
K B P E = Q B Q E = 1 ⇒ K B = P E = 1 3 A B = 2 3
S M N K = 1 2 d K ; M N . M N = 1 2 N B . M N = 1 2 d P ; A B C = 2 3 . S H = 2 3 7 ⇒ V P . M N K = 1 3 d P ; A B C . S M N K = 7 9
Lại có:
K Q K P = 1 2 ⇒ V Q . M N P V K . M N P = 1 2 ⇒ V Q . M N P = 1 2 V K . M N P = 7 18
Thầy gợi ý cách xác định thiết diện thông qua hình vẽ sau:
Em kéo dài KN cắt AC tại P (trong mp(ABC)), từ đó tiếp tục dựng hình để xác định giao tuyến với các mặt còn lại của hình chóp để có thiết diện là tứ giác KMQN nhé
Ta có M, N lần lượt là trung điểm của SA, SC
Do đó, tam giác SAC có MN // AC (1)
Ta có: \(\frac{{BP}}{{BA}} = \frac{{BQ}}{{BC}} = \frac{1}{3}\)
Suy ra: PQ // AC (2)
Từ (1) và (2), suy ra: MN // PQ
Chọn đáp án A
Trong mặt phẳng (ABC), gọi E = NP ∩ AC
Khi đó Q chính là giao điểm của SC với EM
Áp dụng định lý Menelaus vào tam giác ABC ta có:
Áp dụng định lý Menelaus vào tam giác SAC ta có: