giá trị x,y,x thỏa mãn: x/2=y/3=z/4 và 3.x-4.y+5.z=70
giúp mk nhanh nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo BĐT Cosi ta có: \(\hept{\begin{cases}\frac{x^4+y^4}{2}\ge\sqrt{x^4\cdot y^4}=x^2y^2\\\frac{y^4+z^4}{2}\ge\sqrt{y^4\cdot z^4}=y^2z^2\\\frac{z^4+x^4}{2}\ge\sqrt{z^4\cdot x^4}=x^2z^2\end{cases}\Rightarrow x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2}\)
chứng minh tương tự: \(x^2y^2+y^2z^2+z^2x^2\ge xy^2z+xyz^2+x^2yz\Leftrightarrow x^2y^2+y^2z^2+x^2z^2\ge xyz\left(x+y+z\right)\)
\(\Leftrightarrow x^2y^2+y^2z^2+x^2z^2\ge3xyz\)(do x+y+z=3)
Do đó: \(x^4+y^4+z^4\ge3xyz\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x^4=y^4;y^4=z^4;z^4=x^4\\x^2y^2=y^2z^2;y^2z^2=z^2x^2;z^2x^2=x^2y^2\end{cases}\Leftrightarrow x=y=z}\)(1)
mà x+y+z=3 (2)
Từ (1) và (2) => 3x=3 => x=1 => y=z=1
=> \(x^{2018}+y^{2019}+x^{2020}=1+1+1=3\)
\(\frac{x}{y}=\frac{2}{3}\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{2.3}=\frac{y}{3.3}\Rightarrow\frac{x}{6}=\frac{y}{9}\left(1\right)\)
\(\frac{x}{3}=\frac{z}{5}\Rightarrow\frac{x}{2.3}=\frac{z}{5.2}\Rightarrow\frac{x}{6}=\frac{z}{10}\left(2\right)\)
Từ 1 và 2
\(\Rightarrow\frac{x}{6}=\frac{y}{9}=\frac{z}{10}\)
Đặt \(\frac{x}{6}=\frac{y}{9}=\frac{z}{10}=k\)
=> x = 6k
y = 9k
z = 10k
Thay vào đẳng thức 3(đề cho) , ta có :
x2 + y2 + z2 = \(\frac{217}{4}\)
=> (6k)2 + (9k)2 + (10k)2 = \(\frac{217}{4}\)
=> 36k2 + 81k2 + 100k2 = \(\frac{217}{4}\)
=> k2(36 + 81 + 100) = \(\frac{217}{4}\)
=> k2 = \(\frac{217}{4}:217=\frac{217}{4}.\frac{1}{217}=\frac{1}{4}=0,25\)
Mà x , y , z dương
=> k chỉ có thể nhận giá trị dương vì 6 ; 9 ; 10 > 0
=> k = 0,25
=> x = 6. 0,25 = 1,5
y = 9. 0,25 = 2,25
z = 10. 0,25 = 2,5
=> x + 2y - 2z = 1,5 + 2. 2,25 - 2. 2,5
= 1,5 + 4,5 - 5
= 1
Ta có:\(\frac{x}{y}=\frac{2}{3}\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{6}=\frac{y}{9}\left(1\right)\)
\(\frac{x}{3}=\frac{z}{5}\Rightarrow\frac{x}{6}=\frac{z}{10}\left(2\right)\)
Từ (1) và (2)\(\Rightarrow\frac{x}{6}=\frac{y}{9}=\frac{z}{10}\Rightarrow\frac{x^2}{36}=\frac{y^2}{81}=\frac{z^2}{100}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{36}=\frac{y^2}{81}=\frac{z^2}{100}=\frac{x^2+y^2+z^2}{36+81+100}=\frac{1}{4}\)
\(\Rightarrow x^2=\frac{1}{4}\cdot36=9\Rightarrow x=3\)(vì x là số dương)
\(\Rightarrow y^2=81\cdot\frac{1}{4}=20,25\Rightarrow y=4,5\text{(vì y là số dương)}\)
\(\Rightarrow z^2=\frac{1}{4}\cdot100=25\Rightarrow z=5\text{(vì z là số dương)}\)
\(\Rightarrow x+2y-2z=3+4,5\cdot2-5\cdot2=12-10=2\)
Áp dụng tc dstbn:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{3x-4y+5z}{3\cdot2-3\cdot4+5\cdot4}=\dfrac{70}{14}=5\\ \Leftrightarrow\left\{{}\begin{matrix}x=10\\y=15\\z=20\end{matrix}\right.\)