Từ 1,2,3,4,5,6 có thể lập được bao nhiêu STN a) có 3 chữ số khác nhau từng đôi 1 b) có 4 chữ số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D.
Gọi số cần tìm có dạng ,
Chọn f: có 3 cách
Chọn b,c,d,e :có cách
Vậy có số
\(\overline{abcd}\)
(c,d) có thể là (1;2); (1;6); (2;4); (3;2); (3;6); (5;6)
Với mỗi bộ sẽ có \(1\cdot A^2_4=12\left(số\right)\)
=>Có 12*6=72 số
a. Gọi số đó là \(\overline{ab}\)
a có 5 cách chọn (khác 0), b có 5 cách chọn (khác a)
Theo quy tắc nhân ta có: \(5.5=25\) số
b. Gọi số đó là \(\overline{abc}\)
a có 5 cách chọn (khác 0), b có 5 cách chọn (khác a), c có 4 cách chọn (khác a và b)
Có: \(5.5.4=100\) số
c. Gọi số đó là \(\overline{abcd}\)
Do số chẵn nên d chẵn
- TH1: \(d=0\) (1 cách chọn d)
a có 5 cách chọn (khác d), b có 4 cách chọn (khác a và d), c có 3 cách chọn
\(\Rightarrow1.5.4.3=60\) số
- TH2: \(d\ne0\Rightarrow d\) có 2 cách chọn (2 và 4)
a có 4 cách chọn (khác 0 và d), b có 4 cách chọn (khác a và d), c có 3 cách chọn
\(\Rightarrow2.4.4.3=96\) số
Theo quy tắc cộng, có: \(60+96=156\) số thỏa mãn
d.
Gọi số đó là \(\overline{abcde}\)
Số lẻ nên e lẻ \(\Rightarrow\) e có 3 cách chọn (1;3;5)
a có 4 cách chọn (khác 0 và e), b có 4 cách chọn (khác a và e), c có 3 cách, d có 2 cách
\(\Rightarrow3.4.4.3.2=288\) số
Đáp án C
Gọi a b c d e là số thỏa mãn đề bài, ta có
+) a có 4 cách chọn
+) b có 4 cách chọn
+) e có 3 cách chọn
+) d có 2 cách chọn
+) e có 1 cách chọn
Suy ra có 4.4.3.2.1 = 96 cách chọn.
Đáp án C
Gọi a b c d e → là số thỏa mãn đề bài, ta có
+) a có 4 cách chọn
+) b có 4 cách chọn
+) e có 3 cách chọn
+) d có 2 cách chọn
+) e có 1 cách chọn
Suy ra có 4.4.3.2.1 = 96 cách chọn
Đáp án : C
Gọi số cần tìm có dạng .
Vì chia hết cho 4 suy ra chia hết cho 4( Nhớ rằng 1 số tự nhiên chia hết cho 4 thì 2 chữ số tận cùng của số đó phải chia hết cho 4).
Khi đó .
TH: thì a có 5 cách chọn từ các số còn lại. The quy tắc nhân có 1.5= số thỏa mãn trong trường hợp này.
Tương tự với 9 trường hợp còn lại.
Suy ra có tất cả 5.10=50 số cần tìm.
Gọi chữ số hàng đơn vị là a
TH1: \(a=0\Rightarrow\) 3 chữ số còn lại có \(A_6^3\) cách chọn và hoán vị
TH2: \(a=5\)
\(\Rightarrow\) Chữ số hàng nghìn có 5 cách chọn (khác 5 và 0), 2 chữ số còn lại có \(A_5^2\) cách
\(\Rightarrow A_6^3+5.A_5^2\) số
\(\overline{abcd}\)
TH1: d=0
=>CÓ 6*5*4=120 cách
TH2: d=5
=>Có 5*5*4=100 cách
=>Có 120+100=220 cách
a.
\(A_6^3=120\) số
b.
Có \(6.6.6.6=1296\) số