Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D.
Gọi số cần tìm có dạng ,
Chọn f: có 3 cách
Chọn b,c,d,e :có cách
Vậy có số
\(\overline{abcd}\)
(c,d) có thể là (1;2); (1;6); (2;4); (3;2); (3;6); (5;6)
Với mỗi bộ sẽ có \(1\cdot A^2_4=12\left(số\right)\)
=>Có 12*6=72 số
a. Gọi số đó là \(\overline{ab}\)
a có 5 cách chọn (khác 0), b có 5 cách chọn (khác a)
Theo quy tắc nhân ta có: \(5.5=25\) số
b. Gọi số đó là \(\overline{abc}\)
a có 5 cách chọn (khác 0), b có 5 cách chọn (khác a), c có 4 cách chọn (khác a và b)
Có: \(5.5.4=100\) số
c. Gọi số đó là \(\overline{abcd}\)
Do số chẵn nên d chẵn
- TH1: \(d=0\) (1 cách chọn d)
a có 5 cách chọn (khác d), b có 4 cách chọn (khác a và d), c có 3 cách chọn
\(\Rightarrow1.5.4.3=60\) số
- TH2: \(d\ne0\Rightarrow d\) có 2 cách chọn (2 và 4)
a có 4 cách chọn (khác 0 và d), b có 4 cách chọn (khác a và d), c có 3 cách chọn
\(\Rightarrow2.4.4.3=96\) số
Theo quy tắc cộng, có: \(60+96=156\) số thỏa mãn
d.
Gọi số đó là \(\overline{abcde}\)
Số lẻ nên e lẻ \(\Rightarrow\) e có 3 cách chọn (1;3;5)
a có 4 cách chọn (khác 0 và e), b có 4 cách chọn (khác a và e), c có 3 cách, d có 2 cách
\(\Rightarrow3.4.4.3.2=288\) số
Đáp án C
Gọi a b c d e là số thỏa mãn đề bài, ta có
+) a có 4 cách chọn
+) b có 4 cách chọn
+) e có 3 cách chọn
+) d có 2 cách chọn
+) e có 1 cách chọn
Suy ra có 4.4.3.2.1 = 96 cách chọn.
Đáp án : C
Gọi số cần tìm có dạng .
Vì chia hết cho 4 suy ra chia hết cho 4( Nhớ rằng 1 số tự nhiên chia hết cho 4 thì 2 chữ số tận cùng của số đó phải chia hết cho 4).
Khi đó .
TH: thì a có 5 cách chọn từ các số còn lại. The quy tắc nhân có 1.5= số thỏa mãn trong trường hợp này.
Tương tự với 9 trường hợp còn lại.
Suy ra có tất cả 5.10=50 số cần tìm.
Gọi chữ số hàng đơn vị là a
TH1: \(a=0\Rightarrow\) 3 chữ số còn lại có \(A_6^3\) cách chọn và hoán vị
TH2: \(a=5\)
\(\Rightarrow\) Chữ số hàng nghìn có 5 cách chọn (khác 5 và 0), 2 chữ số còn lại có \(A_5^2\) cách
\(\Rightarrow A_6^3+5.A_5^2\) số
\(\overline{abcd}\)
TH1: d=0
=>CÓ 6*5*4=120 cách
TH2: d=5
=>Có 5*5*4=100 cách
=>Có 120+100=220 cách
Số tự nhiên có 3 chữ số có dạng \(\overline{abc}\).
TH1: \(a=3\)
Nếu \(b=4\) thì lập được 2 số tự nhiên thỏa mãn.
Nếu \(b\in\left\{1;2\right\}\), b có 2 cách chọn, c có 4 cách chọn \(\Rightarrow\) Lập được 8 số tự nhiên thỏa mãn.
TH2: \(a\in\left\{1;2\right\}\)
a có 2 cách chọn, b có 5 cách chọn, c có 4 cách chọn.
\(\Rightarrow\) Lập được \(2.5.4=40\) số tự nhiên thỏa mãn.
Vậy lập được 48 số tự nhiên thỏa mãn.
a.
\(A_6^3=120\) số
b.
Có \(6.6.6.6=1296\) số