CÁC TRƯỜNG HỢP BẰNG NHAU CỦA HAI tam giác vuông?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}ch-cgv\\cgv-cgv\\ch-gn\\cgv-gn\end{matrix}\right.\)
(Bạn tự vẽ hình giùm)
1/ \(\Delta ABC\)vuông tại A
=> \(BC^2=AB^2+AC^2\)(định lý Pitago)
=> \(BC^2=9^2+6^2\)
=> \(BC^2=9+36\)
=> \(BC^2=45\)
=> \(BC=\sqrt{45}\)(cm)
2/ Ta có: \(AE=EC=\frac{AC}{2}=\frac{6}{2}\)= 3 (cm)
\(\Delta BAD\)và \(\Delta EAD\)có: BA = EA (= 3cm)
\(\widehat{BAD}=\widehat{EAD}\)(AD là tia phân giác \(\widehat{A}\))
Cạnh AD chung
=> \(\Delta BAD\)= \(\Delta EAD\)(c. g. c) (đpcm)
3/ \(\Delta ABC\)và \(\Delta AME\)có: \(\widehat{A}\)chung
AB = AE (\(\Delta BAD\)= \(\Delta EAD\))
\(\widehat{ABC}=\widehat{AEM}\)(\(\Delta BAD\)= \(\Delta EAD\))
=> \(\Delta ABC\)= \(\Delta AME\)(g. c. g) => AC = AM (hai cạnh tương ứng)
nên \(\Delta ACM\)cân tại A
và \(\widehat{A}=90^o\)
=> \(\Delta ACM\)vuông cân tại A (đpcm)
4/ Ta có: \(\widehat{AEM}+\widehat{AME}=90^o\)
=> \(\widehat{AEM}< 90^o\)(vì số đo của \(\widehat{AEM}\)và \(\widehat{AME}\)luôn luôn là số dương)
=> \(\widehat{MEC}>90^o\)(tự chứng minh)
=> \(\Delta MEC\)tù => MC là cạnh lớn nhất => ME < MC
áp dụng đ/lý pitago vào tam giác v ABC ta đ̣c BC^2=AB^2+AC^2=3^2+6^2 BC=3căn5 cm câu b xét tam g ABD và tam g AED ta cóAB=AE=3 cm góc BAD=góc EAD(gt) AD chung nên 2 tam g = nhau câu c góc ABC=góc AEM(VÌgócABD=AED mà AED+AME=90 độ) xét tam giác ABC và tg AMEcógócA chung AB=AE gócABC=AEM nên 2 tgiác =nhau suy raAM=AC suy ra tamg AMC v cân
1: Đặt AB/3=AC/4=BC/5=k
=>AB=3k; AC=4k; BC=5k
\(AB^2+AC^2=9k^2+16k^2=25k^2=\left(5k\right)^2=BC^2\)
=>ΔABC vuông tại A
2: Đặt AB/8=AC/17=BC/15=k
=>AB=8k; AC=17k; BC=15k
\(AB^2+BC^2=64k^2+225k^2=289k^2=\left(17k\right)^2=AC^2\)
=>ΔABC vuông tại B
chọn trường hợp nào cũng được miễn là 2 tam giác băng nhau là được
TICK NHA
Phát biểu a) là phát biểu sai. Vì một tam giác đều khi có ba cạnh bằng nhau không nhất thiết phải bằng 2cm, có thể bằng 3cm, 4cm, …
Phát biểu b) là đúng. Vì tam giác đều là tam giác có ba cạnh bằng nhau và ba góc bằng nhau.
Phát biểu c) là sai. Vì tam giác IKH chỉ có hai cạnh và hai góc bằng nhau nên chưa đủ điều kiện để tam giác IKH là tam giác đều.
gọi chiều dái các cạnh lần lượt là a;b;c
Ta có c là cạnh huyền a;b là các cạnh góc vuông
Theo định lí Py-ta-go ta có: c2=a2+b2
mak c=102
=> a2+b2=1022=10404
Theo đề a/8=b/15
Áp dụng tính chất dãy tỉ số = nhau:
=> \(\frac{a^2}{8^2}=\frac{b^2}{15^2}=\frac{a^2+b^2}{8^2+15^2}=\frac{10404}{289}=36\)
a=36.8=288cm
b=36.15=540cm
gọi cạnh huyền là c, 2 cạnh góc vuông lần lượt là a và b.
Áp dụng định lí pi ta gô về tam giác vuông ta có:
a2+b2=c2=1022=10404(cm)
Mặt khác do 2 cạnh góc vuông tỉ lệ với 8:15
=>a/8=b/15
Bình phương 2 vế ta được:
a2/64=b2/225
Theo tính chất dãy các tỉ số bằng nhau, ta được:
a2/64=b2/225=a2+b2/64+225=10404/289=36
=>a2=36.64=>a=48
=>b2=36.225=90
Vậy 2 cạnh góc vuông cần tìm là 48cm và 90cm.
2 cạnh góc vuông
Cạnh góc vuông và góc nhọn kề cạnh đó
cạnh huyền-cạnh góc vuông
cạnh huyền-góc nhọn
c.c.c
g.c.g
c.g.c
cạnh huyề cạnh góc vuông