Hỏi có bao nhiêu giá trị nguyên của m để phương trình 3x+m2=10m-9 có nghiệm thực?
A. 7
B. 9
C. 6
D. 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A.
Bất phương trình tương đương: 2x > m2 - 10m + 9
Bất phương trình đã cho nghiệm đúng với mọi x khi và chỉ khi :
m2 - 10m + 9 ≤ 0 hay 1 ≤ m ≤ 9
Mà
Chọn D.
Phương trình
YCBT trở thành(1) có nghiệm thực khi và chỉ khi (m + 4) (3 - m) > 0
Suy ra: -4 < m < 3
Mà
Đáp án A
Xét x ∈ - π ; π mà 1 + 2 sin x ≥ 0 1 + 2 cos x ≥ 0 suy ra x ∈ - π 6 ; 2 π 3
Ta có 1 + 2 cos x + 1 + 2 sin x = m 2 ⇔ m 2 8 = 1 + sin x + cos x + 1 + 2 sin x 1 + 2 cos x
Đặt t = sin x + cos x = 2 sin x + π 4 ⇒ t ∈ 3 - 1 2 ; 2 mà 2 sin x . cos x = t 2 - 1 .
Khi đó f t = 1 + t + 2 t 2 + 2 t - 1 , có f ' t = t + 2 t + 1 2 t 2 + 2 t - 1 > 0 , ∀ t ∈ 3 - 1 2 ; 2
Suy ra f(t) là hàm số đồng biến trên 3 - 1 2 ; 2 ⇒ m i n f t = f 2 = 2 + 2 2 m a x f t = f 3 - 1 2 = 1 + 3 2
Do đó, để f t = m 2 8 có nghiệm ⇔ 1 + 3 2 ≤ m 2 8 ≤ 2 + 2 2 ⇔ 2 1 + 3 ≤ m ≤ 4 1 + 2 .
Xét x ∈ - π ; π mà 2 sin x + 1 ≥ 0 2 cos x + 1 ≥ 0 suy ra x ∈ - π 6 ; 2 π 3
Ta có:
Đặt t = sin x + cos x = 2 sin x + π 4 ⇒ t ∈ 3 - 1 2 ; 2
Và 2.sinx.cos x= t2- 1
Khi đó:
Suy ra y= f( t) là hàm số đồng biến trên 3 - 1 2 ; 2 ⇒ m i n f ( t ) = f ( 2 ) = 2 + 2 2 m a x f ( t ) = f 3 - 1 2 = 1 + 3 2
Do đó, để f( t) = m2/ .8 có nghiệm ⇔ 1 + 3 2 ≤ m 2 8 ≤ 2 + 2 2 ⇔ 2 1 + 3 ≤ m ≤ 4 1 + 2
Mà m nguyên chọn m= 5; 6;7; 8.
Chọn C.
Chọn A.
Phương trình đã cho tương đương 3x= -m2+10m-9 (1)
Phương trình (1) có nghiệm thực khi và chỉ khi -m2+10m -9>0 hay 1<m<9
Mà