K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2018


NV
12 tháng 12 2020

Câu 8 là \(\left(8a^2-\dfrac{1}{2}b\right)^6\) hay \(\left(8a^2-\dfrac{1}{2b}\right)^6\) bạn? (tốt nhất là bạn dùng tính năng gõ công thức toán để đăng đề, hoặc chụp hình gửi đề trực tiếp lên, hiện nay hoc24 đã cho đăng đề bằng hình ảnh)

9.

\(\left(x+8.x^{-2}\right)^9=\sum\limits^9_{k=0}C_9^kx^{9-k}.8^k.x^{-2k}=\sum\limits^9_{k=0}C_9^k8^kx^{9-3k}\)

Số hạng ko chứa x \(\Rightarrow9-3k=0\Rightarrow k=3\)

Số hạng đó là: \(C_9^3.8^3=...\)

28 tháng 4 2018

Chọn D

Số hạng tổng quát của khai triển

Số hạng chứa  x 5 trong A(x) 

Số hạng tổng quát của khai triển 

Số hạng chứa  x 5  trong B(x) là 

Vậy hệ số của số hạng chứa  x 5  trong khai triển P(x) đã cho là 240-13608 = -13368.

12 tháng 12 2020

15/ Mũ 4=> có 4+1=5 số hạng=> số hạng chính giữa là: \(C^2_4.3^{4-2}.x^2.2^2y^2=58x^2y^2\)

18/ \(x.x^k=x^7\Rightarrow k=6\)

\(C^6_9.3^6.2^3=489888\)

19/ \(C^7_7+C^7_8.\left(-1\right)^7+C^7_9.2^2=...\)

13 tháng 12 2020

C18 , c19 là lm sao vậy ạ ? Mk ko hiểu 2 bài này nơi

3 tháng 9 2021

Đặt A=(2+x)5(3x-1)7

khai triển ta có:A=(\(_{k=0}^5\Sigma C_5^k2^{5-k}x^k\)).(\(^7_{i=0}\Sigma C_7^i\left(3x\right)^i\))

=\(\left(_{k=0}^5\Sigma\right)\left(_{i=0}^7\Sigma\right)\left(C_5^kC^i_7\right)\left(x^k.\left(3x\right)^i\right)\)

=số hạng\(\left(C_5^kC^i_7\right)\left(x^k.\left(3x\right)^i\right)\)chứa xtại k+i=5

có k\(\in\){0,1,2,...5},i\(\in\){0,1,2,...7}

=>(k,i)={(0,5);(1,4);(2,3);(3,2);(4,1);(5,0)}

=>Hệ số của x5 là:\(\left(C_5^0C^5_7\right)3^5\)+\(\left(C_5^1C^4_7\right)\left(3^4\right)\)+\(\left(C_5^2C^3_7\right)\left(3^3\right)\)+\(\left(C_5^3C^2_7\right)\left(3^2\right)\)+

\(\left(C_5^4C^1_7\right)\left(3^1\right)\)+\(\left(C_5^5C^0_7\right)3^0\)=30724

Hok tốt!!!

3 tháng 9 2021

b) ta có (1+x-x2)8=(1+(x-x2))8

=\(^8_{k=0}\Sigma.C_8^k\left(x-x^2\right)^k\)=\(^8_{k=0}\Sigma.C_8^k\left(x-1\right)^kx^k\)=\(^8_{k=0}\Sigma.C_8^k\left(x-1\right)^kx^k\)

20 tháng 9 2019

20 tháng 5 2019

27 tháng 1 2017

1 tháng 3 2018

Đáp án C

Phương pháp:

Phân tích đa thức  1 + x + x 2 + x 3  thành nhân tử.

Sử dụng khai triển nhị thức Newton:

Áp dụng khai triển nhị thức Newton ta có:

 

NV
12 tháng 11 2019

Làm xong rồi nhấn gửi thì lỗi, làm lại từ đầu nên chỉ làm 2 câu thôi, 2 câu sau bạn tự làm tương tự:

a/ \(\sum\limits^8_{k=0}C_8^kx^{2k}\left(1-x\right)^k=\sum\limits^8_{k=0}\sum\limits^k_{i=0}C_8^kC_k^i\left(-1\right)^ix^{2k+i}\)

Số hạng chứa \(x^8\) có:

\(\left\{{}\begin{matrix}2k+i=8\\0\le i\le k\le8\\i;k\in N\end{matrix}\right.\) \(\Rightarrow\left(i;k\right)=\left(0;4\right);\left(2;3\right)\)

Hệ số: \(C_8^4C_4^0.\left(-1\right)^0+C_8^3C_3^2.\left(-1\right)^2\)

b/ \(1+x+x^2+x^3=\left(1+x\right)\left(1+x^2\right)\)

\(\Rightarrow\left(1+x+x^2+x^3\right)^{10}=\left(1+x\right)^{10}\left(1+x^2\right)^{10}\)

\(=\sum\limits^{10}_{k=0}C_{10}^kx^k\sum\limits^{10}_{i=0}C_{10}^ix^{2i}=\sum\limits^{10}_{k=0}\sum\limits^{10}_{i=0}C_{10}^kC_{10}^ix^{2i+k}\)

Số hạng chứa \(x^5\) có:

\(\left\{{}\begin{matrix}2i+k=5\\0\le k\le10\\0\le i\le10\\i;k\in N\end{matrix}\right.\) \(\Rightarrow\left(i;k\right)=\left(0;5\right);\left(1;3\right);\left(2;1\right)\)

Hệ số: \(C_{10}^0C_{10}^5+C_{10}^1C_{10}^3+C_{10}^2C_{10}^1\)