Cho hàm số y = 2 x − 3 x − 2 C . Gọi d là tiếp tuyến bất kì của (C) d, cắt hai đường tiệm cận của đồ thị (C) lần lượt tại A, B . Khi đó khoảng cách giữa A và B ngắn nhất bằng
A. 3 2
B. 4
C. 2 2
D. 3 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Ta có y ' = - 1 x - 2 2 . Gọi M a ; 2 a - 3 a - 2 là tọa độ tiếp điểm của tiếp tuyến
Hệ số góc của tiếp tuyến là k = y ' a = - 1 a - 2 2
Phương trình đường thẳng d là y = - 1 a - 2 2 x - a + 2 a - 3 a - 2
Đồ thị hàm số có tiệm cận đứng là x = 2 tiệm cận ngang là y = 2
Ta có A 2 ; 2 a - 2 a - 2 , B 2 a - 2 ; 2 ⇒ A B = 4 a - 2 2 + 4 a - 2 2 = 2 a - 2 2 + 1 a - 2 2
Áp dụng bất đẳng thức Cô-si ta có A B = 2 a - 2 2 + 1 a - 2 2 ≥ 2 2 a - 2 2 . 1 a - 2 2 = 2 2
Do đó khoảng cách ngắn nhất giữa A và B là 2 2 .
Giao điểm của hai đường tiệm cận là I ( -1;2 )
y = 2 x - 1 x + 1 ⇒ y ' = 3 x + 1 2 ⇒ PTTT tại M x 0 , y 0 là
( d ) y = 3 x 0 + 1 2 x - x 0 + 2 x 0 - 1 x 0 + 1
Giao của (d) với TCD x = -1 là A - 1 ; 2 x 0 - 4 x 0 - 1 , Giao của (d) với TCD B 2 x 0 + 1 ; 2
A B 2 + I B 2 = 40 ⇔ 2 - 2 x 0 - 4 x 0 - 1 2 + - 2 x 0 - 2 2 = 40
⇔ 36 x 0 + 1 2 + 4 x 0 + 1 2 = 40
x 0 + 1 4 - 10 x 0 + 1 2 + 9 = 0 ⇔ x 0 + 1 2 = 1 x 0 + 1 2 = 9 ⇒ x 0 = 2 x 0 > 0 ⇒ y 0 = - 1 ⇒ x 0 y 0 = 2
Đáp án cần chọn là D
Chọn A
Phương trình tiếp tuyến tại điểm M là d:
Đồ thị có hai tiệm cận có phương trình lần lượt là d 1 : x = 1; d 2 : y = 2
d cắt d 1 tại điểm
d cắt d 2 tại điểm Q(2a-1;2), d 1 cắt d 2 tại điểm I(1;2)
Ta có
Tập xác định D= R\{1}.
Đạo hàm
(C) có tiệm cận đứng x=1 (d1) và tiệm cận ngang y=2 (d2) nên I(1 ;2).
Gọi .
Tiếp tuyến ∆ của (C) tại M có phương trình
∆ cắt d1 tại và cắt d2 tại .
Ta có .
Do đó .
Chọn C.
Tập xác định D= R\ { 1}.
Đạo hàm y ' = - 3 ( x - 1 ) 2 , ∀ x ≠ 1 .
Đồ thị hàm số C có tiệm cận đứng là x= 1 và tiệm cận ngang y= 2 nên I (1 ;2 ) là giao của 2 đường tiệm cận.
Gọi M ( x 0 ; 2 x 0 + 1 x 0 - 1 ) ∈ ( C ) , x 0 ≠ 1 .
Tiếp tuyến ∆ của C tại M có phương trình là :
⇔ y = - 3 ( x 0 - 1 ) 2 ( x - x 0 ) + 2 x 0 + 1 x 0 - 1
∆ cắt TCĐ tại A ( 1 ; 2 x 0 + 2 x 0 - 1 ) và cắt TCN tại B( 2x0-1 ; 2) .
Ta có I A = 2 x 0 + 2 x 0 - 1 - 2 = 4 x 0 - 1 ; I B = ( 2 x 0 - 1 ) - 1 = 2 x 0 - 1 .
Do đó, S = 1 2 I A . I B = 1 2 4 x 0 - 1 . 2 x 0 - 1 = 4 .
Chọn D.
Đáp án C.
Ta có I 2 ; 1 .
Tiếp tuyến với C tại điểm M x 0 ; x 0 + 2 x 0 − 2 là d : y = − 4 x 0 − 2 2 x − x 0 + x 0 + 2 x 0 − 2
Tọa độ A là nghiệm của hệ
y = − 4 x 0 − 2 2 x − x 0 + x 0 + 2 x 0 − 2 x = 2 ⇒ y = 4 x 0 − 2 + x 0 + 2 x 0 − 2 ⇒ A 2 ; x 0 + 6 x 0 − 2 ⇒ I A → = 0 ; 8 x 0 − 2
Tọa độ B là nghiệm của hệ
y = − 4 x 0 − 2 2 x − x 0 + x 0 + 2 x 0 − 2 y = 2 ⇒ x 0 − 2 2 = − 4 x − x 0 + x 0 2 − 4 ⇒ B 2 x 0 − 2 ; 1 ⇒ I B → = 2 x 0 − 4 ; 0 Do đó C I A B = π . A B = π I A 2 + I B 2 ≥ π 2 I A . I B
Mà I A . I B = 8 x 0 − 2 . 2 x 0 − 4 = 16 ⇒ C I A B ≥ 4 π 2
Đáp án C
Gọi M x 0 ; 2 x 0 − 3 x 0 − 2 là tiếp tuyến của d với (C)
Ta có y ' = − 1 x − 2 2 ⇒ y ' x 0 = − 1 x 0 − 2 2
Suy ra d : y = − 1 x 0 − 2 2 x − x 0 + 2 x 0 − 3 x 0 − 2 ⇔ d : y = − 1 x 0 − 2 2 x + 2 x 0 2 − 6 x 0 + 6 x 0 − 2 2
Ta có d ∩ x = 2 = A 2 ; 2 x 0 − 2 x 0 − 2 d ∩ y = 2 = B 2 x 0 − 2 ; 2 ⇒ A B = 4 x 0 − 2 2 + 4 x 0 − 2 2
Có A B 2 = 4 x 0 − 2 2 + 4 x 0 − 2 2 ≥ 24 x 0 − 2 2 4 x 0 − 2 2 = 8 ⇒ A B ≥ 2 2 ⇒ min A B = 2 2