Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Gọi M x 0 ; 2 x 0 − 3 x 0 − 2 là tiếp tuyến của d với (C)
Ta có y ' = − 1 x − 2 2 ⇒ y ' x 0 = − 1 x 0 − 2 2
Suy ra d : y = − 1 x 0 − 2 2 x − x 0 + 2 x 0 − 3 x 0 − 2 ⇔ d : y = − 1 x 0 − 2 2 x + 2 x 0 2 − 6 x 0 + 6 x 0 − 2 2
Ta có d ∩ x = 2 = A 2 ; 2 x 0 − 2 x 0 − 2 d ∩ y = 2 = B 2 x 0 − 2 ; 2 ⇒ A B = 4 x 0 − 2 2 + 4 x 0 − 2 2
Có A B 2 = 4 x 0 − 2 2 + 4 x 0 − 2 2 ≥ 24 x 0 − 2 2 4 x 0 − 2 2 = 8 ⇒ A B ≥ 2 2 ⇒ min A B = 2 2
Cho tam giác ABC đều
D thuộc AB , E thuộc AC sao cho BD = AE
CM : Khi D,E thay đổi ( di chuyển ) trên AB,AC thì đường trung tuyến DE luôn đi qua điểm cố định
Help me !!!
Giao điểm của hai đường tiệm cận là I ( -1;2 )
y = 2 x - 1 x + 1 ⇒ y ' = 3 x + 1 2 ⇒ PTTT tại M x 0 , y 0 là
( d ) y = 3 x 0 + 1 2 x - x 0 + 2 x 0 - 1 x 0 + 1
Giao của (d) với TCD x = -1 là A - 1 ; 2 x 0 - 4 x 0 - 1 , Giao của (d) với TCD B 2 x 0 + 1 ; 2
A B 2 + I B 2 = 40 ⇔ 2 - 2 x 0 - 4 x 0 - 1 2 + - 2 x 0 - 2 2 = 40
⇔ 36 x 0 + 1 2 + 4 x 0 + 1 2 = 40
x 0 + 1 4 - 10 x 0 + 1 2 + 9 = 0 ⇔ x 0 + 1 2 = 1 x 0 + 1 2 = 9 ⇒ x 0 = 2 x 0 > 0 ⇒ y 0 = - 1 ⇒ x 0 y 0 = 2
Đáp án cần chọn là D
Chọn D.
Nếu hệ số góc của tiếp tuyến khác không thì tiếp tuyến và đường tiệm cận luôn cắt nhau. Nếu đồ thị hàm số có tiệm cận đứng thì tiệm cận đứng luôn cắt tiếp tuyến. Do đó để thỏa mãn yêu cầu bài toán thì đồ thị hàm số chỉ có tiệm cận ngang. Vậy điều kiện cần là a>0. Khi đó đồ thị hàm số có tiệm cận ngang là
Đáp án C.
Ta có I 2 ; 1 .
Tiếp tuyến với C tại điểm M x 0 ; x 0 + 2 x 0 − 2 là d : y = − 4 x 0 − 2 2 x − x 0 + x 0 + 2 x 0 − 2
Tọa độ A là nghiệm của hệ
y = − 4 x 0 − 2 2 x − x 0 + x 0 + 2 x 0 − 2 x = 2 ⇒ y = 4 x 0 − 2 + x 0 + 2 x 0 − 2 ⇒ A 2 ; x 0 + 6 x 0 − 2 ⇒ I A → = 0 ; 8 x 0 − 2
Tọa độ B là nghiệm của hệ
y = − 4 x 0 − 2 2 x − x 0 + x 0 + 2 x 0 − 2 y = 2 ⇒ x 0 − 2 2 = − 4 x − x 0 + x 0 2 − 4 ⇒ B 2 x 0 − 2 ; 1 ⇒ I B → = 2 x 0 − 4 ; 0 Do đó C I A B = π . A B = π I A 2 + I B 2 ≥ π 2 I A . I B
Mà I A . I B = 8 x 0 − 2 . 2 x 0 − 4 = 16 ⇒ C I A B ≥ 4 π 2
Đáp án C
Ta có y ' = - 1 x - 2 2 . Gọi M a ; 2 a - 3 a - 2 là tọa độ tiếp điểm của tiếp tuyến
Hệ số góc của tiếp tuyến là k = y ' a = - 1 a - 2 2
Phương trình đường thẳng d là y = - 1 a - 2 2 x - a + 2 a - 3 a - 2
Đồ thị hàm số có tiệm cận đứng là x = 2 tiệm cận ngang là y = 2
Ta có A 2 ; 2 a - 2 a - 2 , B 2 a - 2 ; 2 ⇒ A B = 4 a - 2 2 + 4 a - 2 2 = 2 a - 2 2 + 1 a - 2 2
Áp dụng bất đẳng thức Cô-si ta có A B = 2 a - 2 2 + 1 a - 2 2 ≥ 2 2 a - 2 2 . 1 a - 2 2 = 2 2
Do đó khoảng cách ngắn nhất giữa A và B là 2 2 .