K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2016

Sai r bn ơi, là 2 ms đúng

 

21 tháng 7

A = \(\dfrac{1}{1+2}\) + \(\dfrac{1}{1+2+3}\) + ... + \(\dfrac{1}{1+2+3+...+99}\) + \(\dfrac{1}{50}\)

A = \(\dfrac{1}{\left(2+1\right).2:2}\) + \(\dfrac{1}{\left(3+1\right).3:2}\) + ... + \(\dfrac{1}{\left(99+1\right).99:2}\) + \(\dfrac{1}{50}\)

A = \(\dfrac{2}{2.3}\) + \(\dfrac{2}{3.4}\) + \(\dfrac{2}{4.5}\) + ... + \(\dfrac{2}{99.100}\) + \(\dfrac{1}{50}\)

A = 2.(\(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + ... + \(\dfrac{1}{99.100}\)) + \(\dfrac{1}{50}\)

A = 2.(\(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\)  + \(\dfrac{1}{4}-\dfrac{1}{5}\)\(\dfrac{1}{5}\) - \(\dfrac{1}{6}\) + ... + \(\dfrac{1}{99}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)

A = 2.(\(\dfrac{1}{2}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)

A = 2.(\(\dfrac{50}{100}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)

A = 2.\(\dfrac{49}{100}\) + \(\dfrac{1}{50}\)

A = \(\dfrac{49}{50}\) + \(\dfrac{1}{50}\)

A = 1

21 tháng 7

A = \(\dfrac{1}{1+2}\) + \(\dfrac{1}{1+2+3}\) + ... + \(\dfrac{1}{1+2+3+...+99}\) + \(\dfrac{1}{50}\)

A = \(\dfrac{1}{\left(2+1\right).2:2}\) + \(\dfrac{1}{\left(3+1\right).3:2}\) + ... + \(\dfrac{1}{\left(99+1\right).99:2}\) + \(\dfrac{1}{50}\)

A = \(\dfrac{2}{2.3}\) + \(\dfrac{2}{3.4}\) + \(\dfrac{2}{4.5}\) + ... + \(\dfrac{2}{99.100}\) + \(\dfrac{1}{50}\)

A = 2.(\(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + ... + \(\dfrac{1}{99.100}\)) + \(\dfrac{1}{50}\)

A = 2.(\(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\)  + \(\dfrac{1}{4}-\dfrac{1}{5}\)\(\dfrac{1}{5}\) - \(\dfrac{1}{6}\) + ... + \(\dfrac{1}{99}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)

A = 2.(\(\dfrac{1}{2}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)

A = 2.(\(\dfrac{50}{100}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)

A = 2.\(\dfrac{49}{100}\) + \(\dfrac{1}{50}\)

A = \(\dfrac{49}{50}\) + \(\dfrac{1}{50}\)

A = 1

21 tháng 7

A = \(\dfrac{1}{1+2}\) + \(\dfrac{1}{1+2+3}\) + ... + \(\dfrac{1}{1+2+3+...+99}\) + \(\dfrac{1}{50}\)

A = \(\dfrac{1}{\left(2+1\right).2:2}\) + \(\dfrac{1}{\left(3+1\right).3:2}\) + ... + \(\dfrac{1}{\left(99+1\right).99:2}\) + \(\dfrac{1}{50}\)

A = \(\dfrac{2}{2.3}\) + \(\dfrac{2}{3.4}\) + \(\dfrac{2}{4.5}\) + ... + \(\dfrac{2}{99.100}\) + \(\dfrac{1}{50}\)

A = 2.(\(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + ... + \(\dfrac{1}{99.100}\)) + \(\dfrac{1}{50}\)

A = 2.(\(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\)  + \(\dfrac{1}{4}-\dfrac{1}{5}\)\(\dfrac{1}{5}\) - \(\dfrac{1}{6}\) + ... + \(\dfrac{1}{99}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)

A = 2.(\(\dfrac{1}{2}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)

A = 2.(\(\dfrac{50}{100}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)

A = 2.\(\dfrac{49}{100}\) + \(\dfrac{1}{50}\)

A = \(\dfrac{49}{50}\) + \(\dfrac{1}{50}\)

A = 1

21 tháng 7

A = \(\dfrac{1}{1+2}\) + \(\dfrac{1}{1+2+3}\) + ... + \(\dfrac{1}{1+2+3+...+99}\) + \(\dfrac{1}{50}\)

A = \(\dfrac{1}{\left(2+1\right).2:2}\) + \(\dfrac{1}{\left(3+1\right).3:2}\) + ... + \(\dfrac{1}{\left(99+1\right).99:2}\) + \(\dfrac{1}{50}\)

A = \(\dfrac{2}{2.3}\) + \(\dfrac{2}{3.4}\) + \(\dfrac{2}{4.5}\) + ... + \(\dfrac{2}{99.100}\) + \(\dfrac{1}{50}\)

A = 2.(\(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + ... + \(\dfrac{1}{99.100}\)) + \(\dfrac{1}{50}\)

A = 2.(\(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\)  + \(\dfrac{1}{4}-\dfrac{1}{5}\)\(\dfrac{1}{5}\) - \(\dfrac{1}{6}\) + ... + \(\dfrac{1}{99}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)

A = 2.(\(\dfrac{1}{2}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)

A = 2.(\(\dfrac{50}{100}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)

A = 2.\(\dfrac{49}{100}\) + \(\dfrac{1}{50}\)

A = \(\dfrac{49}{50}\) + \(\dfrac{1}{50}\)

A = 1

1 tháng 8 2015

A=1-2+3-4+...+99-100

=(1-2)+(3-4)+...+(99-100)

=-1+(-1)+(-1)+...+(-1)

Số số -1 là: [(100-1)+1]/2=50(số)

=(-1)*50=-50

a: \(2\dfrac{3}{5}+1\dfrac{2}{5}\cdot\dfrac{31}{2}\)

\(=\dfrac{13}{5}+\dfrac{7}{5}\cdot\dfrac{31}{2}\)

\(=\dfrac{26}{10}+\dfrac{217}{10}=\dfrac{243}{10}\)

b: \(4\dfrac{3}{4}-3\dfrac{2}{3}:1\dfrac{1}{6}\)

\(=\dfrac{19}{4}-\dfrac{11}{3}:\dfrac{7}{6}\)

\(=\dfrac{19}{4}-\dfrac{11}{3}\cdot\dfrac{6}{7}\)

\(=\dfrac{19}{4}-\dfrac{22}{7}\)

\(=\dfrac{19\cdot7-22\cdot4}{28}=\dfrac{45}{28}\)

31 tháng 12 2015

violympic đúng ko mk cx bị mắc đây

21 tháng 7

A = \(\dfrac{1}{1+2}\) + \(\dfrac{1}{1+2+3}\) + ... + \(\dfrac{1}{1+2+3+...+99}\) + \(\dfrac{1}{50}\)

A = \(\dfrac{1}{\left(2+1\right).2:2}\) + \(\dfrac{1}{\left(3+1\right).3:2}\) + ... + \(\dfrac{1}{\left(99+1\right).99:2}\) + \(\dfrac{1}{50}\)

A = \(\dfrac{2}{2.3}\) + \(\dfrac{2}{3.4}\) + \(\dfrac{2}{4.5}\) + ... + \(\dfrac{2}{99.100}\) + \(\dfrac{1}{50}\)

A = 2.(\(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + ... + \(\dfrac{1}{99.100}\)) + \(\dfrac{1}{50}\)

A = 2.(\(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\)  + \(\dfrac{1}{4}-\dfrac{1}{5}\)\(\dfrac{1}{5}\) - \(\dfrac{1}{6}\) + ... + \(\dfrac{1}{99}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)

A = 2.(\(\dfrac{1}{2}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)

A = 2.(\(\dfrac{50}{100}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)

A = 2.\(\dfrac{49}{100}\) + \(\dfrac{1}{50}\)

A = \(\dfrac{49}{50}\) + \(\dfrac{1}{50}\)

A = 1

21 tháng 7

A = \(\dfrac{1}{1+2}\) + \(\dfrac{1}{1+2+3}\) + ... + \(\dfrac{1}{1+2+3+...+99}\) + \(\dfrac{1}{50}\)

A = \(\dfrac{1}{\left(2+1\right).2:2}\) + \(\dfrac{1}{\left(3+1\right).3:2}\) + ... + \(\dfrac{1}{\left(99+1\right).99:2}\) + \(\dfrac{1}{50}\)

A = \(\dfrac{2}{2.3}\) + \(\dfrac{2}{3.4}\) + \(\dfrac{2}{4.5}\) + ... + \(\dfrac{2}{99.100}\) + \(\dfrac{1}{50}\)

A = 2.(\(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + ... + \(\dfrac{1}{99.100}\)) + \(\dfrac{1}{50}\)

A = 2.(\(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\)  + \(\dfrac{1}{4}-\dfrac{1}{5}\)\(\dfrac{1}{5}\) - \(\dfrac{1}{6}\) + ... + \(\dfrac{1}{99}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)

A = 2.(\(\dfrac{1}{2}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)

A = 2.(\(\dfrac{50}{100}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)

A = 2.\(\dfrac{49}{100}\) + \(\dfrac{1}{50}\)

A = \(\dfrac{49}{50}\) + \(\dfrac{1}{50}\)

A = 1

21 tháng 7

A = \(\dfrac{1}{1+2}\) + \(\dfrac{1}{1+2+3}\) + ... + \(\dfrac{1}{1+2+3+...+99}\) + \(\dfrac{1}{50}\)

A = \(\dfrac{1}{\left(2+1\right).2:2}\) + \(\dfrac{1}{\left(3+1\right).3:2}\) + ... + \(\dfrac{1}{\left(99+1\right).99:2}\) + \(\dfrac{1}{50}\)

A = \(\dfrac{2}{2.3}\) + \(\dfrac{2}{3.4}\) + \(\dfrac{2}{4.5}\) + ... + \(\dfrac{2}{99.100}\) + \(\dfrac{1}{50}\)

A = 2.(\(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + ... + \(\dfrac{1}{99.100}\)) + \(\dfrac{1}{50}\)

A = 2.(\(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\)  + \(\dfrac{1}{4}-\dfrac{1}{5}\)\(\dfrac{1}{5}\) - \(\dfrac{1}{6}\) + ... + \(\dfrac{1}{99}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)

A = 2.(\(\dfrac{1}{2}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)

A = 2.(\(\dfrac{50}{100}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)

A = 2.\(\dfrac{49}{100}\) + \(\dfrac{1}{50}\)

A = \(\dfrac{49}{50}\) + \(\dfrac{1}{50}\)

A = 1