giúp mình câu 20 và 21 ạ , cảm ơn nhiều
Số nghiệm nguyên dương của phương trình
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
uses crt;
var a:array[1..100]of integer;
i,n,s:integer;
begin
clrscr;
write('Nhap n='); readln(n);
for i:=1 to n do
begin
write('A[',i,']='); readln(a[i]);
end;
s:=1;
for i:=1 to n do
s:=s*a[i];
writeln(s);
readln;
end.
a) Gọi số đó là abc.
Ta có abc=37x+2=11y+5 với x,y thuộc N và x thuộc [3,26], y thuộc [9,90].
Từ pt 37x+2=11y+5 suy ra y=(37x-3)/11.
Thay các giá trị của x vào rồi đối chiếu đk suy ra có 2 giá trị tìm là x=9;20
suy ra abc=335 và 742
Cho 3a>2b>0 và 9a2+4b2=13ab.Tính giá trị biểu thức A=\(\frac{ab}{9a^2-4b^2}\)
Để hệ vô nghiệm thì \(\dfrac{m}{4}=\dfrac{-1}{-m}< >\dfrac{2m}{m+6}\)
=>\(\left\{{}\begin{matrix}\dfrac{m}{4}=\dfrac{1}{m}\\\dfrac{1}{m}< >\dfrac{2m}{m+6}\\\dfrac{m}{4}< >\dfrac{2m}{m+6}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m^2=4\\2m^2< >m+6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\2m^2-m-6< >0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\\left(m-2\right)\left(2m+3\right)< >0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\m\notin\left\{2;-\dfrac{3}{2}\right\}\end{matrix}\right.\Leftrightarrow m=-2\)
Để hệ vô số nghiệm thì \(\dfrac{m}{4}=\dfrac{-1}{-m}=\dfrac{2m}{m+6}\)
=>\(\left\{{}\begin{matrix}\dfrac{m}{4}=\dfrac{1}{m}\\\dfrac{1}{m}=\dfrac{2m}{m+6}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m^2=4\\2m^2=m+6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\2m^2-m-6=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\2m^2-4m+3m-6=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\\left(m-2\right)\left(2m+3\right)=0\end{matrix}\right.\Leftrightarrow m=2\)
1,2 th bạn =)) bài này dùng bernouli 1 phát ra luôn nha bạn
Câu 20.
\(C_n^2+C_n^3=4n\)
Đk: \(n\ge3\)
Pt\(\Rightarrow\dfrac{n!}{2!\left(n-2\right)!}+\dfrac{n!}{3!\left(n-3\right)!}=4n\)
\(\Rightarrow\dfrac{n\left(n-1\right)\left(n-2\right)!}{2\left(n-2\right)!}+\dfrac{n\left(n-1\right)\left(n-2\right)\left(n-3\right)!}{6\left(n-3\right)!}=4n\)
\(\Rightarrow\dfrac{n\left(n-1\right)}{2}+\dfrac{n\left(n-1\right)\left(n-2\right)}{6}=4n\)
Chia cả hai vế cho \(n\) ta được:
\(\Rightarrow\dfrac{n-1}{2}+\dfrac{\left(n-1\right)\left(n-2\right)}{6}=4\)
Bạn tự quy đồng giải pt bậc hai tìm n nhé.
tìm được \(\left[{}\begin{matrix}n=5\left(tm\right)\\n=-5\left(loại\right)\end{matrix}\right.\)
Vậy số nghiệm nguyên dương là 5.
Có 1 số nghiệm nguyên dương.
Chọn B.