K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2021

Câu 20.

\(C_n^2+C_n^3=4n\)

Đk: \(n\ge3\)

Pt\(\Rightarrow\dfrac{n!}{2!\left(n-2\right)!}+\dfrac{n!}{3!\left(n-3\right)!}=4n\)

   \(\Rightarrow\dfrac{n\left(n-1\right)\left(n-2\right)!}{2\left(n-2\right)!}+\dfrac{n\left(n-1\right)\left(n-2\right)\left(n-3\right)!}{6\left(n-3\right)!}=4n\)

  \(\Rightarrow\dfrac{n\left(n-1\right)}{2}+\dfrac{n\left(n-1\right)\left(n-2\right)}{6}=4n\)

  Chia cả hai vế cho \(n\) ta được:

  \(\Rightarrow\dfrac{n-1}{2}+\dfrac{\left(n-1\right)\left(n-2\right)}{6}=4\)

  Bạn tự quy đồng giải pt bậc hai tìm n nhé.

 

8 tháng 11 2021

tìm được \(\left[{}\begin{matrix}n=5\left(tm\right)\\n=-5\left(loại\right)\end{matrix}\right.\)

Vậy số nghiệm nguyên dương là 5.

Có 1 số nghiệm nguyên dương.

Chọn B.

15 tháng 7 2018

Đáp án D

Viết dãy 111...111 (21 chữ số 1) ta thấy, với mỗi cách điền hai số 0 vào dãy trên

⇒ ta được 1 cặp nghiệm nguyên dương của phương trình x + y + z = 21.

Do đó, có C 20 2 cách điền ứng với 190 cặp nghiệm nguyên dương của phương trình đã cho.

3 tháng 2 2019

Đáp án D

Viết dãy 111...111 (21 chữ số 1)

ta thấy, với mỗi cách điền hai số 0 vào dãy trên

ta được 1 cặp nghiệm nguyên dương của phương trình x + y + z = 21.

Do đó, có C 20 2 = 190 cách điền ứng với 190 cặp nghiệm nguyên dương của phương trình đã cho

22 tháng 8 2021

Hồng Phúc CTV, Nguyễn Việt Lâm

23 tháng 12 2021

A mình biết làm rồi nên thôi ạ. Cảm ơn mọi người!!! Cứ đăng câu hỏi xong lại biết làm hic

4 tháng 10 2021

\(sinx=m^2-5m+1\Leftrightarrow sinx=\left(m-1\right)^2\)  (1)

Pt có nghiệm: \(\Rightarrow-1\le sinx\le1\)

                       \(\Rightarrow\) \(0\le\left(m-1\right)^2\le1\)

                       \(\Rightarrow\)\(0\le m-1\le1\Rightarrow-1\le m\le0\) 

Với \(m\in\left[-1;0\right]\) thì (1) có nghiệm.

Để pt (1) không có nghiệm \(\Rightarrow m\in\left(-\infty;-1\right)\cup\left(0;+\infty\right)\)

Giải thích các bước giải:

 sin 2x=cos xsin 2x=cos x

⇔sin 2x=sin (π2−x)⇔sin 2x=sin (π2-x)

⇔⇔ ⎡⎢⎣2x=π2−x+k2π (k∈Z)2x=π−π2+x+k2π (k∈Z)[2x=π2−x+k2π (k∈Z)2x=π−π2+x+k2π (k∈Z) 

⇔⇔ ⎡⎢⎣3x=π2+k2π (k∈Z)x=π2+k2π (k∈Z)[3x=π2+k2π (k∈Z)x=π2+k2π (k∈Z) 

⇔⇔ ⎡⎢ ⎢⎣x=π6+k2π3 (k∈Z)x=π2+k2π (k∈Z)[x=π6+k2π3 (k∈Z)x=π2+k2π (k∈Z) 

Vậy S={π6+k2π3 (k∈Z),π2+k2π (k∈Z)

NV
20 tháng 3 2022

17.

Gọi số vi khuẩn ban đầu là x

Sau 5 phút số vi khuẩn là: \(x.2^5=64000\Rightarrow x=2000\)

Sau k phút:

\(2000.2^k=2048000\Rightarrow2^k=1024=2^{10}\)

\(\Rightarrow k=10\)

NV
20 tháng 3 2022

18.

\(S_{2019}=\left(\dfrac{1}{2}\right)^1+1+\left(\dfrac{1}{2}\right)^2+1+...+\left(\dfrac{1}{2}\right)^{2019}+1\)

\(=\left(\dfrac{1}{2}\right)^1+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{2019}+2019\)

Xét \(S=\left(\dfrac{1}{2}\right)^1+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{2019}\) là tổng cấp số nhân với \(\left\{{}\begin{matrix}u_1=\dfrac{1}{2}\\q=\dfrac{1}{2}\\n=2019\end{matrix}\right.\)

\(\Rightarrow S=\dfrac{1}{2}.\dfrac{\left(\dfrac{1}{2}\right)^{2019}-1}{\dfrac{1}{2}-1}=1-\dfrac{1}{2^{2019}}\)

\(\Rightarrow S_{2020}=2019+S=2020-\dfrac{1}{2^{2019}}\)

19. C là khẳng định sai, ví dụ: \(u_n=2\) ; \(v_n=-\dfrac{1}{n}\)