cho A=3+3^2+3^+3^4+...+3^2021 Tìm số dư khi chia A cho13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Theo định lý Fermat nhỏ thì: $3^{10}\equiv 1\pmod {11}; 4^{10}\equiv 1\pmod {11}$
$\Rightarrow$:
$3^{2021}=(3^{10})^{202}.3\equiv 3\pmod {11}$
$4^{2021}=(4^{10})^{202}.4\equiv 4\pmod {11}$
$\Rightarrow A=3^{2021}+4^{2021}\equiv 3+4\equiv 7\pmod {11}$
Tức $A$ chia $11$ dư $7$
---------------------------------
Tương tự:
$3^{12}\equiv 1\pmod {13}$
$\Rightarrow 3^{2021}=(3^{12})^{168}.3^5\equiv 3^5\equiv 9\pmod {13}$
Tương tự: $4^{2021}\equiv 4^5\equiv 10\pmod {13}$
$\Rightarrow A\equiv 9+10\equiv 6\pmod {13}$
Vậy $A$ chia $13$ dư $6$
Ta có : A + 1 = 1 + 3 + 32 + 33 + 34 + 35 + ... + 32019 +3 2020 + 32021
= (1 + 3 + 32) + (33 + 34 + 35) + ...+ (32019 + 32020 + 32021)
= (1 + 3 + 32) + 33(1 + 3 + 32) + ... + 32019(1 + 3 + 32)
= (1 + 3 + 32)(1 + 33 + ... + 32019)
= 13(1 + 33 + ... + 32019) ⋮ 13
=> A + 1 ⋮13
=> A : 13 dư 12
Vậy số dư khi A : 13 là 12
Số số hạng của A:
2021 - 1 + 1 = 2021 (số)
Do 2021 chia 3 dư 2 nên ta có thể nhóm các số hạng của A thành từng nhóm mà mỗi nhóm có 3 số hạng và dư 2 số hạng như sau:
A = 3 + 3² + (3³ + 3⁴ + 3⁵) + (3⁶ + 3⁷ + 3⁸) + ... + (3²⁰¹⁹ + 3²⁰²⁰ + 3²⁰²¹)
= 12 + 3³.(1 + 3 + 3²) + 3⁶.(1 + 3 + 3²) + ... + 3²⁰¹⁹.(1 + 3 + 3²)
= 12 + 3³.13 + 3⁶.13 + ... + 3²⁰¹⁹.13
= 12 + 13.(3³ + 3⁶ + ... + 3²⁰¹⁹)
Do 13.(3³ + 3⁶ + ... + 3²⁰¹⁹) ⋮ 13
⇒ A = 12 + 13.(3³ + 3⁶ + ... + 3²⁰¹⁹) chia 13 dư 12
Vậy A chia 13 dư 12
\(+\)Ta thấy A có số số hạng là: \(\left(2021-1\right);1+1=2021\)(số)
\(+\)Ta nhóm \(3\)số hạng liên tiếp vào \(1\)nhóm, ta được: \(2021:3=673\)dư \(2\)số
\(\Rightarrow A=\left(3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{2019}+3^{2020}+3^{2021}\right)\)
\(\Rightarrow A=\left(3+3^2\right)+\left(3^3\cdot1+3^3\cdot3+3^3\cdot3^2\right)+...+\left(3^{2019}\cdot1+3^{2019}\cdot3+3^{2019}\cdot3^2\right)\)
\(\Rightarrow A=\left(3+3^2\right)+3^3\cdot\left(1+3+3^2\right)+...+3^{2019}\cdot\left(1+3+3^2\right)\)
\(\Rightarrow A=12+3^3\cdot13+...+3^{2019}\cdot13\)
\(\Rightarrow A=12+13\cdot\left(3^3+3^6+3^9+...+^{2019}\right)\)
Vì\(\hept{\begin{cases}12:13=0dư12\\13\cdot\left(3^3+3^6+3^9+...+3^{2019}\right)⋮13\end{cases}}\)
\(\Rightarrow A:13dư12\)
Vậy \(A:13dư12\)
CHÚC BẠN HỌC TỐT NHÉ
Ta có A + 1 = 1 + 3 + 32 + 33 + 34 + 35 + ... + 32019 + 32020 + 32021
= (1 + 3 + 32) + (33 + 34 + 35) + ... + (32019 + 32020 + 32021)
= (1 + 3 + 32) + 33(1 + 3 + 32) + ... + 32019(1 + 3 + 32)
= (1 + 3 + 32)(1 + 33 + ... + 32019)
= 13(1 + 33 + ... + 32019) \(⋮\)13
=> A : 13 dư 12
\(A=3+3^2+3^3+...+3^{2021}\)
\(A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{2019}+3^{2020}+3^{2021}\right)\)
\(A=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{2019}\left(1+3+3^2\right)\)
\(A=3.13+3^4.13+...+3^{2019}.13\)
\(A=13\left(3+3^4+...+3^{2019}\right)\)
\(\Rightarrow A⋮13\)
Hay \(A:13\)k dư
Lời giải:
Đặt $A=1-3+3^2-3^3+...-3^{2021}$
Dễ thấy $3,3^2,3^3,...,3^{2021}$ đều chia hết cho $3$
$1$ chia $3$ dư $1$
$\Rightarrow A=1-3+3^2-3^3+...-3^{2021}$ chia $3$ dư $1$.
Lại có:
$A=(1-3+3^2)-(3^3-3^4+3^5)+(3^6-3^7+3^8)-....-(3^{2019}-3^{2020}+3^{2021})$
$=(1-3+3^2)-3^3(1-3+3^2)+3^6(1-3+3^2)-....-3^{2019}(1-3+3^2)$
=(1-3+3^2)(1-3^3+3^6-....-3^{2019})$
$=7(1-3^3+3^6-...-3^{2019})\vdots 7$
Vậy $A$ chia hết cho $7$
Ta có : A + 1 = 1 + 3 + 32 + 33 + 34 + 35 + ... + 32019 +3 2020 + 32021
= (1 + 3 + 32) + (33 + 34 + 35) + ...+ (32019 + 32020 + 32021)
= (1 + 3 + 32) + 33(1 + 3 + 32) + ... + 32019(1 + 3 + 32)
= (1 + 3 + 32)(1 + 33 + ... + 32019)
= 13(1 + 33 + ... + 32019) \(⋮\) 13
=> A + 1 \(⋮\)13
=> A : 13 dư 12
Vậy số dư khi A : 13 là 12
đây nha :
a=3+3^2+3^3+ ...+3^2021
=(3+3^2+3^3)+...+(3^2019+3^2020+3^2021)
=12+...+(3^2018.3+3^2018.3^2+3^2018.3^3)
=12+...+(3^2018.12)
=12.(3^4+3^6+...+3^2018)
Vì A chia hết cho 12 nên khi chia cho 13 sẽ dư 1
Bn ơi sau 3²+ là 3 mũ mấy thế bn