K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2021

Ta có : A + 1 = 1 + 3 + 32 + 33 + 34 + 35 + ... + 32019 +3 2020 +  32021 

= (1 + 3 + 32) + (33 + 34 + 35) + ...+  (32019 + 32020 +  32021

=  (1 + 3 + 32) + 33(1 + 3 + 32) + ... + 32019(1 + 3 + 32

=  (1 + 3 + 32)(1 + 33 + ... + 32019

= 13(1 + 33 + ... + 32019\(⋮\) 13

=> A + 1 \(⋮\)13 

=> A : 13 dư 12 

Vậy số dư khi A : 13 là 12

8 tháng 11 2021

ở cuối 3 mũ 2021 nhé

7 tháng 2 2019

5k+1 (k E N). min=1

7k+5 (k E N). min=5

7 tháng 2 2019

 Dạng tổng quát của số tự nhiên:

Chia cho 5 thì dư 1 : \(5k+1\left(k\inℕ\right)\) .

Chia 7 thì dư 5 : \(7k+5(k\inℕ)\).

AH
Akai Haruma
Giáo viên
22 tháng 12 2021

Lời giải:
$A=1+(3+3^2+3^3)+(3^4+3^5+3^6)+....+(3^{2014}+3^{2015}+3^{2016})$

$=1+3(1+3+3^2)+3^4(1+3+3^2)+...+3^{2014}(1+3+3^2)$
$=1+3.13+3^4.13+....+3^{2014}.13$

$=1+13(3+3^4+...+3^{2014})$ 

$\Rightarrow A-1\vdots 13(1)$

Mặt khác:
$A=1+(3+3^2+3^3+3^4)+....+(3^{2013}+3^{2014}+3^{2015}+3^{2016})$
$=1+3(1+3+3^2+3^3)+....+3^{2013}(1+3+3^2+3^3)$
$=1+(3+...+3^{2013})(1+3+3^2+3^3)$

$=1+40(3+....+3^{2013})$

$\Rightarrow A-1\vdots 5(2)$

Từ $(1); (2)$ mà $(5,13)=1$ nên $A-1\vdots (5.13)$ hay $A-1\vdots 65$

$\Rightarrow A$ chia $65$ dư $1$

22 tháng 12 2021

em cảm ơn ạ

 

23 tháng 12 2019

a) \(A=1+3+...+3^{50}\)

\(3A=3+3^2+...+3^{51}\)

\(3A-A=2A=3^{51}-1\Rightarrow A=\frac{3^{51}-1}{2}\)

B) \(A=\left(1+3+3^3\right)+\left(3^2+3^3+3^4\right)+....+\left(3^{48}+3^{49}+3^{50}\right)\)

\(=13+13\cdot3^2+...+13\cdot3^{48}\)

\(=13\left(1+3^2+...+3^{48}\right)⋮2\)

\(\Rightarrow A⋮3\)

C)\(A=\left(1+3+3^2\right)+\left(3^3+3^4+3^5+3^6\right)+....+\left(3^{47}+3^{48}+3^{49}+3^{50}\right)\)

\(=13+3^3\cdot40+3^7\cdot40+...+3^{47}\cdot40\)

\(=13+40\left(3^3+3^7+...+3^{47}\right)\)

Vậy A chia cho 40 dư 13

d) theo câu C

\(40\left(3^3+3^7+...+3^{47}\right)=10\cdot4\cdot\left(3^3+...+3^{47}\right)\)

có tân cùng  là 0

Mà + thêm 13 nên có tận cùng là 3

23 tháng 12 2019

Cau B mk hơi lỗi xíu , bạn tự sửa nha

10 tháng 11 2021

giúp mình với

27 tháng 11 2021

Ta có : A + 1 = 1 + 3 + 32 + 33 + 34 + 35 + ... + 32019 +3 2020 +  32021 

= (1 + 3 + 32) + (33 + 34 + 35) + ...+  (32019 + 32020 +  32021

=  (1 + 3 + 32) + 33(1 + 3 + 32) + ... + 32019(1 + 3 + 32

=  (1 + 3 + 32)(1 + 33 + ... + 32019

= 13(1 + 33 + ... + 32019 13

=> A + 1 13 

=> A : 13 dư 12 

Vậy số dư khi A : 13 là 12

25 tháng 12 2023

Số số hạng của A:

2021 - 1 + 1 = 2021 (số)

Do 2021 chia 3 dư 2 nên ta có thể nhóm các số hạng của A thành từng nhóm mà mỗi nhóm có 3 số hạng và dư 2 số hạng như sau:

A = 3 + 3² + (3³ + 3⁴ + 3⁵) + (3⁶ + 3⁷ + 3⁸) + ... + (3²⁰¹⁹ + 3²⁰²⁰ + 3²⁰²¹)

= 12 + 3³.(1 + 3 + 3²) + 3⁶.(1 + 3 + 3²) + ... + 3²⁰¹⁹.(1 + 3 + 3²)

= 12 + 3³.13 + 3⁶.13 + ... + 3²⁰¹⁹.13

= 12 + 13.(3³ + 3⁶ + ... + 3²⁰¹⁹)

Do 13.(3³ + 3⁶ + ... + 3²⁰¹⁹) ⋮ 13

⇒ A = 12 + 13.(3³ + 3⁶ + ... + 3²⁰¹⁹) chia 13 dư 12

Vậy A chia 13 dư 12

23 tháng 11 2017

1.

Gọi số cần tìm là a

theo bài ra ta có: a-7 chia hết 11

 a-7 chia hết 13

a-7 chia hết 17 và a là số lớn nhất có 4 chữ số

=> (a-7) thuộc BC (11,13,17) và a lớn nhất có 4 chữ số

BCNN (11,13,17)=2431

(a-7) thuộc BC (11,13,17)= B(2431)= (0; 2431;4862; 7298; 9724; 12155;....)

=>a thuộc (7; 2438; 4869; 7305; 9731; 12163;...)

mà a là số lớn nhất có 4 chữ số

nên a=9731

Vậy số cần tìm là 9731