Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dạng tổng quát của số tự nhiên:
Chia cho 5 thì dư 1 : \(5k+1\left(k\inℕ\right)\) .
Chia 7 thì dư 5 : \(7k+5(k\inℕ)\).
Lời giải:
$A=1+(3+3^2+3^3)+(3^4+3^5+3^6)+....+(3^{2014}+3^{2015}+3^{2016})$
$=1+3(1+3+3^2)+3^4(1+3+3^2)+...+3^{2014}(1+3+3^2)$
$=1+3.13+3^4.13+....+3^{2014}.13$
$=1+13(3+3^4+...+3^{2014})$
$\Rightarrow A-1\vdots 13(1)$
Mặt khác:
$A=1+(3+3^2+3^3+3^4)+....+(3^{2013}+3^{2014}+3^{2015}+3^{2016})$
$=1+3(1+3+3^2+3^3)+....+3^{2013}(1+3+3^2+3^3)$
$=1+(3+...+3^{2013})(1+3+3^2+3^3)$
$=1+40(3+....+3^{2013})$
$\Rightarrow A-1\vdots 5(2)$
Từ $(1); (2)$ mà $(5,13)=1$ nên $A-1\vdots (5.13)$ hay $A-1\vdots 65$
$\Rightarrow A$ chia $65$ dư $1$
a) \(A=1+3+...+3^{50}\)
\(3A=3+3^2+...+3^{51}\)
\(3A-A=2A=3^{51}-1\Rightarrow A=\frac{3^{51}-1}{2}\)
B) \(A=\left(1+3+3^3\right)+\left(3^2+3^3+3^4\right)+....+\left(3^{48}+3^{49}+3^{50}\right)\)
\(=13+13\cdot3^2+...+13\cdot3^{48}\)
\(=13\left(1+3^2+...+3^{48}\right)⋮2\)
\(\Rightarrow A⋮3\)
C)\(A=\left(1+3+3^2\right)+\left(3^3+3^4+3^5+3^6\right)+....+\left(3^{47}+3^{48}+3^{49}+3^{50}\right)\)
\(=13+3^3\cdot40+3^7\cdot40+...+3^{47}\cdot40\)
\(=13+40\left(3^3+3^7+...+3^{47}\right)\)
Vậy A chia cho 40 dư 13
d) theo câu C
\(40\left(3^3+3^7+...+3^{47}\right)=10\cdot4\cdot\left(3^3+...+3^{47}\right)\)
có tân cùng là 0
Mà + thêm 13 nên có tận cùng là 3
Ta có : A + 1 = 1 + 3 + 32 + 33 + 34 + 35 + ... + 32019 +3 2020 + 32021
= (1 + 3 + 32) + (33 + 34 + 35) + ...+ (32019 + 32020 + 32021)
= (1 + 3 + 32) + 33(1 + 3 + 32) + ... + 32019(1 + 3 + 32)
= (1 + 3 + 32)(1 + 33 + ... + 32019)
= 13(1 + 33 + ... + 32019) ⋮ 13
=> A + 1 ⋮13
=> A : 13 dư 12
Vậy số dư khi A : 13 là 12
Số số hạng của A:
2021 - 1 + 1 = 2021 (số)
Do 2021 chia 3 dư 2 nên ta có thể nhóm các số hạng của A thành từng nhóm mà mỗi nhóm có 3 số hạng và dư 2 số hạng như sau:
A = 3 + 3² + (3³ + 3⁴ + 3⁵) + (3⁶ + 3⁷ + 3⁸) + ... + (3²⁰¹⁹ + 3²⁰²⁰ + 3²⁰²¹)
= 12 + 3³.(1 + 3 + 3²) + 3⁶.(1 + 3 + 3²) + ... + 3²⁰¹⁹.(1 + 3 + 3²)
= 12 + 3³.13 + 3⁶.13 + ... + 3²⁰¹⁹.13
= 12 + 13.(3³ + 3⁶ + ... + 3²⁰¹⁹)
Do 13.(3³ + 3⁶ + ... + 3²⁰¹⁹) ⋮ 13
⇒ A = 12 + 13.(3³ + 3⁶ + ... + 3²⁰¹⁹) chia 13 dư 12
Vậy A chia 13 dư 12
1.
Gọi số cần tìm là a
theo bài ra ta có: a-7 chia hết 11
a-7 chia hết 13
a-7 chia hết 17 và a là số lớn nhất có 4 chữ số
=> (a-7) thuộc BC (11,13,17) và a lớn nhất có 4 chữ số
BCNN (11,13,17)=2431
(a-7) thuộc BC (11,13,17)= B(2431)= (0; 2431;4862; 7298; 9724; 12155;....)
=>a thuộc (7; 2438; 4869; 7305; 9731; 12163;...)
mà a là số lớn nhất có 4 chữ số
nên a=9731
Vậy số cần tìm là 9731
Ta có : A + 1 = 1 + 3 + 32 + 33 + 34 + 35 + ... + 32019 +3 2020 + 32021
= (1 + 3 + 32) + (33 + 34 + 35) + ...+ (32019 + 32020 + 32021)
= (1 + 3 + 32) + 33(1 + 3 + 32) + ... + 32019(1 + 3 + 32)
= (1 + 3 + 32)(1 + 33 + ... + 32019)
= 13(1 + 33 + ... + 32019) \(⋮\) 13
=> A + 1 \(⋮\)13
=> A : 13 dư 12
Vậy số dư khi A : 13 là 12