K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2018

3x - 2 < 4

⇔ 3x < 4 + 2 (Chuyển vế và đổi dấu hạng tử -2)

⇔ 3x < 6

⇔ x < 2 (Chia cả hai vế cho 3 > 0, BPT không đổi chiều).

Vậy nghiệm của bất phương trình là x < 2.

6 tháng 4 2020

hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

7 tháng 4 2020

,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Xét \(x\ge4\)

\(BPT\Leftrightarrow x^2+x+1>x-4\)

\(\Leftrightarrow x^2+5>0\)(hiển nhiên đúng với mọi x)

Xét x<4

\(BPT\Leftrightarrow x^2+x+1>4-x\)

\(\Leftrightarrow x^2+2x-3>0\)

\(\Leftrightarrow\left(x-1\right)\left(x+3\right)>0\)

\(\Leftrightarrow\orbr{\begin{cases}x>1\\x< -3\end{cases}}\)

28 tháng 4 2019

        2(x-1)+44<6

<=>2x-2+44    <6

<=>2x             <6+2-44

<=>2x             <-36

<=>  x             <-18

Vậy tập nghiệm của bất phương trình là {x/x<-18}   

30 tháng 1 2016

\(\frac{x^2\left(x-1\right)\left(x+1\right)}{\left(>0\right)}\le0\Rightarrow\left(x-1\right)\left(x+1\right)\le0\Rightarrow-1\le x\le1\)

30 tháng 1 2016

x=0 đúng

26 tháng 2 2016

Đặt \(t=x^2\) với điều kiện \(t\in R+\)


\(x^4+3x^2+\sqrt{x^2+1}<20\) \(\Rightarrow\) \(f\left(t\right):=t^2+3t^{ }+\sqrt{t^{ }+1}<20=f\left(3\right)\) 

Dễ thấy \(f\left(t\right)\) đồng biến trên R+

Do đó, kết hợp với điều kiện \(t\in R+\) ta có

\(f\left(t\right):=t^2+3t^{ }+\sqrt{t^{ }+1}<20=f\left(3\right)\) \(\Leftrightarrow\)  \(0\le t<3\)

Vì vậy,

\(x^4+3x^2+\sqrt{x^2+1}<20\) \(\Leftrightarrow\) \(0\le x^2<3\) \(\Leftrightarrow\) \(\left|x\right|<\sqrt{3}\)

Bất phương trình đã cho có nghiệm là \(-\sqrt{3}\)<x<\(\sqrt{3}\)

4 tháng 3 2018

Ta có : 

\(\frac{x+1}{x}< 2\)

\(\Leftrightarrow\)\(x+1< 2x\)

\(\Leftrightarrow\)\(1< 2x-x\)

\(\Leftrightarrow\)\(x>1\)

Vậy \(x>1\)