Giải bất phương trình: x - 2 < 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Xét \(x\ge4\)
\(BPT\Leftrightarrow x^2+x+1>x-4\)
\(\Leftrightarrow x^2+5>0\)(hiển nhiên đúng với mọi x)
Xét x<4
\(BPT\Leftrightarrow x^2+x+1>4-x\)
\(\Leftrightarrow x^2+2x-3>0\)
\(\Leftrightarrow\left(x-1\right)\left(x+3\right)>0\)
\(\Leftrightarrow\orbr{\begin{cases}x>1\\x< -3\end{cases}}\)
Đặt \(t=x^2\) với điều kiện \(t\in R+\)
\(x^4+3x^2+\sqrt{x^2+1}<20\) \(\Rightarrow\) \(f\left(t\right):=t^2+3t^{ }+\sqrt{t^{ }+1}<20=f\left(3\right)\)
Dễ thấy \(f\left(t\right)\) đồng biến trên R+
Do đó, kết hợp với điều kiện \(t\in R+\) ta có
\(f\left(t\right):=t^2+3t^{ }+\sqrt{t^{ }+1}<20=f\left(3\right)\) \(\Leftrightarrow\) \(0\le t<3\)
Vì vậy,
\(x^4+3x^2+\sqrt{x^2+1}<20\) \(\Leftrightarrow\) \(0\le x^2<3\) \(\Leftrightarrow\) \(\left|x\right|<\sqrt{3}\)
Bất phương trình đã cho có nghiệm là \(-\sqrt{3}\)<x<\(\sqrt{3}\)
Ta có :
\(\frac{x+1}{x}< 2\)
\(\Leftrightarrow\)\(x+1< 2x\)
\(\Leftrightarrow\)\(1< 2x-x\)
\(\Leftrightarrow\)\(x>1\)
Vậy \(x>1\)
3x - 2 < 4
⇔ 3x < 4 + 2 (Chuyển vế và đổi dấu hạng tử -2)
⇔ 3x < 6
⇔ x < 2 (Chia cả hai vế cho 3 > 0, BPT không đổi chiều).
Vậy nghiệm của bất phương trình là x < 2.