Tìm tập hợp nghiệm của phương trình 25 x + 6. 5 x + 5 = 0
A. {1;2} B. {0;1}
C. {0} D. {1}
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Khi k=0 thì PT sẽ là:
9x^2-25=0
=>x=5/3 hoặc x=-5/3
b: Thay x=-1 vào pt, ta sẽ được:
-k^2+2k+9-25=0
=>-k^2+2k-16=0
=>\(k\in\varnothing\)
hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
a: \(\text{Δ}=\left(2m-2\right)^2-4\left(m-5\right)\)
=4m^2-8m+4-4m+20
=4m^2-12m+24
=(2m-3)^2+15>0
=>Phương trình luôn có nghiệm
b: x1+x2=2m-2; x1x2=m-5
x1+x2=2m-2; 2x1x2=2m-10
=>x1+x2-2x1x2=2m-2-2m+10=8 là hệ thức ko phụ thuộc vào m
a: Δ=(m+1)^2-4m=(m-1)^2>=0
=>Phương trình luôn có nghiệm
b: x1^2+x2^2+3x1x2=5
=>(x1+x2)^2+x1x2=5
=>(m+1)^2+m=5
=>m^2+3m-4=0
=>(m+4)(m-1)=0
=>m=1 hoặc m=-4
a) m = 4 thì PT trở thành:
\(2.\left(4^2-9\right)x+4-3=0\)
\(\Leftrightarrow10x+1=0\)
\(\Leftrightarrow x=-\dfrac{1}{10}\)
Vậy PT có nghiệm \(x=-\dfrac{1}{10}\)
b) Đặt nghiệm của PT là \(x_0\)
\(\Rightarrow2\left(m^2-9\right)x_0+m-3=\forall x_0\)
\(\Leftrightarrow2\left(m-3\right)\left(m+3\right)x_0+m-3=0\forall x_0\)
\(\Leftrightarrow\left[2\left(m+3\right)+x_0\right]\left(m-3\right)=0\forall x_0\)
\(\Rightarrow m-3=0\\ \Leftrightarrow m=3\)
Vậy m = 3 thì phương trình nghiệm đúng với mọi x
a: Thay x=-2 vào pt,ta được:
-8+4a+8-4=0
=>4a-4=0
hay a=1
b: Pt sẽ là \(x^3+x^2-4x-4=0\)
\(\Leftrightarrow x^2\left(x+1\right)-4\left(x+1\right)=0\)
=>(x+1)(x-2)(x+2)=0
hay \(x\in\left\{-1;2;-2\right\}\)
x − 2 = 3 x − 5 ( 1 ) ⇔ x − 2 = 3 x − 5 x − 2 = 5 − 3 x ⇔ 2 x = 3 4 x = 7 ⇔ x = 3 2 x = 7 4
Đáp án cần chọn là: A
a) Thay x=0 vào phương trình, ta được:
\(4\cdot0^2-2\cdot\left(2m+3\right)\cdot0+m+1=0\)
\(\Leftrightarrow m+1=0\)
hay m=-1
Áp dụng hệ thức Vi-et, ta có:
\(x_1+x_2=\dfrac{2\left(2m+3\right)}{4}\)
\(\Leftrightarrow x_1=\dfrac{2\cdot\left(-2+3\right)}{4}=\dfrac{2}{4}=\dfrac{1}{2}\)
Vậy: Khi m=-1 và nghiệm còn lại là \(x=\dfrac{1}{2}\)
Đáp án : B