K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2017

a. Hình vẽ (0.5 điểm)

Xét ΔABE và ΔDBE có:

Cạnh BE chung

BD = BA

⇒ ΔABE = ΔDBE (cạnh huyền – góc nhọn) (1 điểm)

24 tháng 5 2019

A C H F E D B

A.Xét ΔABE và ΔDBE có:

Cạnh BE chung

BD = BA

⇒ ΔABE = ΔDBE (cạnh huyền – góc nhọn) 

b. Do BD = BA nên B nằm trên đường trung trực của AD

Do ΔABE = ΔDBE ⇒ AE = ED (hai cạnh tương ứng)

E nằm trên đường trung trực của AD 

Vậy BE là đường trung trực của AD

c. Do ΔABE = ΔDBE ⇒ ∠(ABE) = ∠(EBC) (hai góc tương ứng)

Suy ra BE là tia phân giác của góc ABC 

24 tháng 5 2019

HÌNH VẼ HƠI LỆCH 1 TÍ NHA

20 tháng 4 2018

c. Do ΔABE = ΔDBE ⇒ ∠(ABE) = ∠(EBC) (hai góc tương ứng)

Suy ra BE là tia phân giác của góc ABC (1 điểm)

24 tháng 1 2018

b. Do BD = BA nên B nằm trên đường trung trực của AD

Do ΔABE = ΔDBE ⇒ AE = ED (hai cạnh tương ứng) (1 điểm)

E nằm trên đường trung trực của AD (1 điểm)

Vậy BE là đường trung trực của AD (0.5 điểm)

a: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có

BE chung

BA=BD

=>ΔBAE=ΔBDE

b; BA=BD

EA=ED

=>BE là trung trực của AD

26 tháng 3 2019

A B C D H K

Bài này tớ nghĩ không cần điểm E đâu.v:))

Trên cạnh AC lấy điểm K sao cho AK=AH.

Do tam giác ABD cân tại B nên ^BAD=^BDA.

Ta có:\(\widehat{DAK}=\widehat{BAC}-\widehat{BAD}=90^0-\widehat{BAD}\)

\(\widehat{HAD}=\widehat{DHA}-\widehat{AHD}=90^0-\widehat{AHD}\)

\(\Rightarrow\widehat{DAK}=\widehat{HAD}\)

Xét \(\Delta\)HAD và \(\Delta\)KAD có:AD chung;^DAK=^HAD;AH=AK \(\Rightarrow\Delta HAD=\Delta KAD\left(c-g-c\right)\Rightarrow\widehat{AHD}=\widehat{AKD}=90^0\)

\(\Rightarrow\Delta CKD\) vuông tại K.\(\Rightarrow KD< DC\)(1)

Mà  \(\Delta\)HAD = \(\Delta\)KAD nên HD=KD.(2)

Từ (1) và (2) suy ra điều cần chứng minh_._

a) Ta có: \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy trong ΔBAC cân tại A)

mà \(\widehat{ACB}=\widehat{ECN}\)(hai góc đối đỉnh)

nên \(\widehat{ABC}=\widehat{ECN}\)

hay \(\widehat{MBD}=\widehat{NCE}\)

Xét ΔMBD vuông tại D và ΔNCE vuông tại E có 

DB=EC(cmt)

\(\widehat{MBD}=\widehat{NCE}\)(cmt)

Do đó: ΔMBD=ΔNCE(cạnh góc vuông-góc nhọn kề)

Suy ra: DM=EN(hai cạnh tương ứng)

9 tháng 5 2015

A B C H D E

Tam giác ABC vuông tại A => góc ACD + DBA = 90o

Tam giác ABH vuông tại H => góc BAH + DBA = 90o

=> góc ACD = BAH

Xét tam giác ADC có: góc ADB = DAC + ACD (tính chất góc ngoài của tam giác)

=> góc ADB = DAC + BAH

mặt khác, Góc BAD = DAH + BAH 

Vì tam giác ABD cân tại B (AB = AD) => góc ADB = BAD 

=> DAC = DAH => AD là phân giác của góc HAC 

6 tháng 5 2018

Mình đồng ý với ý kiến của cô Loan