K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2019

A B C D H K

Bài này tớ nghĩ không cần điểm E đâu.v:))

Trên cạnh AC lấy điểm K sao cho AK=AH.

Do tam giác ABD cân tại B nên ^BAD=^BDA.

Ta có:\(\widehat{DAK}=\widehat{BAC}-\widehat{BAD}=90^0-\widehat{BAD}\)

\(\widehat{HAD}=\widehat{DHA}-\widehat{AHD}=90^0-\widehat{AHD}\)

\(\Rightarrow\widehat{DAK}=\widehat{HAD}\)

Xét \(\Delta\)HAD và \(\Delta\)KAD có:AD chung;^DAK=^HAD;AH=AK \(\Rightarrow\Delta HAD=\Delta KAD\left(c-g-c\right)\Rightarrow\widehat{AHD}=\widehat{AKD}=90^0\)

\(\Rightarrow\Delta CKD\) vuông tại K.\(\Rightarrow KD< DC\)(1)

Mà  \(\Delta\)HAD = \(\Delta\)KAD nên HD=KD.(2)

Từ (1) và (2) suy ra điều cần chứng minh_._

a: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có

BE chung

BA=BD

=>ΔBAE=ΔBDE

b; BA=BD

EA=ED

=>BE là trung trực của AD

20 tháng 4 2018

c. Do ΔABE = ΔDBE ⇒ ∠(ABE) = ∠(EBC) (hai góc tương ứng)

Suy ra BE là tia phân giác của góc ABC (1 điểm)

12 tháng 1 2017

a. Hình vẽ (0.5 điểm)

Xét ΔABE và ΔDBE có:

Cạnh BE chung

BD = BA

⇒ ΔABE = ΔDBE (cạnh huyền – góc nhọn) (1 điểm)

8 tháng 8 2018

a, Xét tg BAE và tg BDE  ( \(\widehat{BAE}=\widehat{BDE}=90^0\))

BA=BD (gt)

BE chung

=> tg BAE = tg BDE ( ch-cgv)

=> AE=ED 

Ta có \(\hept{\begin{cases}BA=BD\left(gt\right)\\AE=ED\left(cmt\right)\end{cases}}< =>\)BE trung trực AD (đpcm) 

b, +ED vuông BC

+ AH vuông BC

=> AH//DE

=> \(\widehat{HAD}=\widehat{ADE}\)( So le trong) (2)

Lại có gọi m là giao 2 đường thẳng BE và AD

vì BE trung trực AD =>+ \(\widehat{AME}=\widehat{EMD}=90^{0^{ }}\)

Xét tg AEM và tg DEM có \(\left(\widehat{AME}=\widehat{EMD}=90^0\left(cmt\right)\right)\)

+ AD = ED (cma)

+ EM chung

=> tg AEM = tg DEM ( ch-cgv)

=> \(\widehat{DAE}=\widehat{ADE}\)(2)

tỪ (1) VÀ (2) => \(\widehat{HAD}=\widehat{DAE}\)=> AD phân giác góc AHC

24 tháng 1 2018

b. Do BD = BA nên B nằm trên đường trung trực của AD

Do ΔABE = ΔDBE ⇒ AE = ED (hai cạnh tương ứng) (1 điểm)

E nằm trên đường trung trực của AD (1 điểm)

Vậy BE là đường trung trực của AD (0.5 điểm)

9 tháng 8 2020

a) ΔABDΔABD cân tại A => BADˆ=BDAˆBAD^=BDA^ (t/c tam giác cân)

Lại có: BADˆ+DAEˆ=BACˆ=90oBAD^+DAE^=BAC^=90o

BDAˆ+ADEˆ=BDEˆ=90oBDA^+ADE^=BDE^=90o

Do đó, DAEˆ=ADEˆDAE^=ADE^

=> ΔADEΔADE cân tại E (dấu hiệu nhận biết tam giác cân)

=> AE = ED (t/c tam giác cân) (đpcm)

a) Có: AH // ED (cùng ⊥BC⊥BC)
=> HADˆ=ADEˆHAD^=ADE^ (so le trong)

= DAE (câu a)

=> AD là phân giác HACˆ(đpcm)

9 tháng 8 2020

học tốtimage

10 tháng 3 2017

hình