K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2018
Đề sai pải bn ơi !!!
13 tháng 1 2018

sửa lại đề  \(DF\perp AB\) 

KẺ thêm \(DF\perp BH\)và cắt BH taị G và cắt AB tại I

Xét \(\Delta IGB=\Delta IFD\left(ch-gn\right)\Rightarrow BG=FD\)

TA có GH song song với DE

          GD song song với HE

       \(\Rightarrow GH=DE\)(TÍNH  CHẤT ĐOẠN CHẮN )

Mà BG+GH=BH

\(\Rightarrow DF+DE=BH\)\(\left(ĐPCM\right)\)

HÌNH VẼ BÊN DƯỚI BẠN NHỚ XEM NHA

CHO MÌNH NỮA HIHI

ta có hình vẽ A B C H E I G D F

10 tháng 4 2017

A B C H D E I 1 2 1 2 5 5 8

a) Xét 2 tam giác vuông AHB và tam giác AHC có:

AB = AC (gt)

AH là cạnh chung

=> tam giác AHB = tam giác AHC (cạnh huyền - cạnh góc vuông)

=>HB = HC (2 cạnh tương ứng)

=> góc A1= góc A2 (2 góc tương ứng)

b) Ta có : BC = HB + HC

mà HB = HC (cmt)

BC = 8 (cm)

=> HB = HC = BC/2 = 8/2= 4 (cm)

Xét tam giác AHB vuông tại H áp dugj định lí Pitago có:

AB^2 = AH^2 + HB^2

hay 5^2 = AH^2 + 4^2

=> AH = 5^2 - 4^2 =25 - 16= 9

=> AH = căn bậc 2 của 9 = 3 (cm)

c)Xét 2 tam giác vuông BHD và tam giác CHE có:

HB = HC (cmt)

Góc B = góc C ( vì tam giác ABC cân tại A)

=> tam giác BHD = tam giác CHE (cạnh huyền - góc nhọn)

=> BD= CE (2 cạnh tương ứng)

Xét 2 tam giác ADI và tam giác AEI có:

góc A1 = góc A2 (cmt)

AI là cạnh chung

AD =AE ( vì AB = AC; BD = CE)

=> tam giác ADI = tam giác AEI (c-g-c)

=> góc I1 = góc I2 (2 góc tương ứng)

mà góc I1 + góc I2 = 180 độ

=> góc I1 = góc I2 = 180/ 2= 90 (độ)

=> AI vuông góc với DE

=> AH cũng vuông góc với DE

mặt khác: AH lại vuông góc với BC

=> DE // BC (đpcm)

22 tháng 1 2021

Bài dễ thế lày màgianroi

1 tháng 3 2018

bn đăng bài sai chỗ r

1 tháng 3 2017

Sao lại có 2 lần DE hả?

1 tháng 3 2017

đề bài là vậy r mik cx ko pk

25 tháng 11 2018

A D B H C E

a) 

5 tháng 1 2020

A B C D E 1 2

Sửa đề: Trên cạnh BC lấy điểm E sao cho BE = BA (xem lại đoạn này)

CM: Xét t/giác ABD và t/giác EBD

có: AB = BE (gt)

  \(\widehat{B_1}=\widehat{B_2}\)(gt)

 BD : chung

=> t/giác ABD = t/giác EBD (c.g.c)

b) Ta có : t/giác ABD = t/giác EBD (cmt)

=> AD = DE (2 cạnh t/ứng)

=> \(\widehat{A}=\widehat{BED}=90^0\)(2 góc t/ứng) => \(DE\perp BC\)

c) Ta có: AB = BE (gt) => B \(\in\)đường trung trực của AE

 AD = DE (cmt) => D \(\in\)đường trung trực của AE

mà B \(\ne\)D => BD là đường trung trực của AE