K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2021

\(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{92.95}+\frac{1}{95.98}\)

\(A=\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{92.95}+\frac{3}{95.98}\right)\)

\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{92}-\frac{1}{95}+\frac{1}{95}-\frac{1}{98}\right)\)

\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{98}\right)\)

\(A=\frac{1}{3}.\frac{24}{49}\)

\(A=\frac{8}{49}\)

Vậy ...........

30 tháng 7 2015

A = 1/2.5 + 1/5.8 + 1/8.11 + ... + 1/92.95 + 1/95.98

A = 1/3 . ( 3/2.5 + 3/5.8 + 3/8.11 + ... + 3/92.95 + 3/95.98 )

A = 1/3 . ( 1/2 - 1/5 + 1/5 - 1/8 + 1/8 - 1/11 + ... + 1/92 - 1/95 + 1/95 - 1/98 )

A = 1/3 . ( 1/2 - 1/98 )

A = 1/3 . 24/49

A = 8/49

20 tháng 4 2020

1234567890

4 tháng 3 2020

\(\frac{x+2}{2002}+\frac{x+5}{1999}+\frac{x+201}{1803}=-3\)

\(\Rightarrow\frac{x+2}{2002}+1+\frac{x+5}{1999}+1+\frac{x+201}{1803}+1=0\)

\(\Rightarrow\frac{x+2004}{2002}+\frac{x+2004}{1999}+\frac{x+2004}{1803}=0\)

\(\Rightarrow\left(x+2004\right)\left(\frac{1}{2002}+\frac{1}{1999}+\frac{1}{1803}\right)=0\)

Dễ thấy \(\left(\frac{1}{2002}+\frac{1}{1999}+\frac{1}{1803}\right)>0\)nên x + 2004 = 0

Vậy x = -2004

4 tháng 3 2020

\(\frac{x+2}{2002}+\frac{x+5}{1999}+\frac{x+201}{1803}=-3\)

\(\Leftrightarrow\frac{x+2}{2002}+1+\frac{x+5}{1999}+1+\frac{x+201}{1803}+1=-3+1+1+1\)

\(\Leftrightarrow\frac{x+2004}{2002}+\frac{x+2004}{1999}+\frac{x+2004}{1803}=0\)

\(\Leftrightarrow\left(x+2004\right)\left(\frac{1}{2002}+\frac{1}{1999}+\frac{1}{1803}\right)=0\)

\(\Leftrightarrow x+2004=0\left(\frac{1}{2002}+\frac{1}{1999}+\frac{1}{1803}\ne0\right)\)

<=> x=-2004

4 tháng 3 2020

a,\(\frac{x+2}{2002}+\frac{x+5}{1999}+\frac{x+201}{1803}=-3\)

\(< =>\left(\frac{x+2}{2002}+1\right)+\left(\frac{x+5}{1999}+1\right)+\left(\frac{x+201}{1803}+1\right)=0\)

\(< =>\frac{x+2004}{2002}+\frac{x+2004}{1999}+\frac{x+2004}{1803}=0\)

\(< =>\left(x+2004\right).\left(\frac{1}{2002}+\frac{1}{1999}+\frac{1}{1803}\right)=0\)

Do \(\frac{1}{2002}+\frac{1}{1999}+\frac{1}{1803}\ne0\)

\(=>x+2004=0\)

\(=>x=-2004\)

28 tháng 7 2021

Ta có:\(A=\dfrac{1}{2}-\dfrac{2}{5}+\dfrac{2}{5}-\dfrac{3}{8}+\dfrac{3}{8}-\dfrac{4}{11}+...+\dfrac{31}{92}-\dfrac{32}{95}+\dfrac{32}{95}-\dfrac{33}{98}\)

                \(=\dfrac{1}{2}+\dfrac{33}{98}=\dfrac{82}{98}=\dfrac{41}{49}\)

=1/3(3/2*5+3/5*8+...+3/95*98)

=1/3(1/2-1/5+1/5-1/8+...+1/95-1/98)

=1/3*96/196

=32/196

=8/49

11 tháng 11 2018

Trẻ trâu hỏi cái loz

11 tháng 11 2018

Con mẹ mày à

15 tháng 3 2023

đặt

\(A=\dfrac{1}{2\cdot5}+\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+..+\dfrac{1}{92\cdot95}+\dfrac{1}{95\cdot97}\)

\(3A=\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+...+\dfrac{3}{92\cdot95}+\dfrac{3}{95\cdot97}\)

\(3A=\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{92}-\dfrac{1}{95}+\dfrac{1}{95}-\dfrac{1}{97}\)

\(3A=\dfrac{1}{2}-\dfrac{1}{97}\\ 3A=\dfrac{95}{194}\\ A=\dfrac{95}{582}\)

14 tháng 9 2020

\(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{95.98}\)

=> 3A = \(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{95.98}\)

=> 3A = \(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{95}-\frac{1}{98}\)

=> 3A = \(\frac{1}{2}-\frac{1}{98}\)

=> 3A = \(\frac{24}{49}\)

=> A = \(\frac{8}{49}\)

14 tháng 9 2020

\(A=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{92\cdot95}+\frac{1}{95\cdot98}\)

\(A=\frac{1}{3}\left(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{92\cdot95}+\frac{3}{95\cdot98}\right)\)

\(A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{95}-\frac{1}{98}\right)\)

\(A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{98}\right)=\frac{1}{3}\cdot\frac{24}{49}=\frac{8}{49}\)

Sửa 95.98 thành 1/(95.98) nhá