K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2021

15 . C

16 . A

17 . A

18 . C

19 . B

20 . D

21 . A

22 .C

8 tháng 11 2021

15. D

16. B

17. A

18. C

19. D

20. D

21. A

22. B

23. C

29 tháng 4 2022

a.\(A=\dfrac{1}{x-1}-\dfrac{x^2+x}{x^2+1}.\left(\dfrac{1}{x-1}-\dfrac{1}{x+1}\right)\);\(ĐK:x\ne\pm1\)

\(A=\dfrac{1}{x-1}-\dfrac{x\left(x+1\right)}{x^2+1}.\left(\dfrac{x+1-x+1}{\left(x-1\right)\left(x+1\right)}\right)\)

\(A=\dfrac{1}{\left(x-1\right)}-\dfrac{2x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^2+1\right)}\)

\(A=\dfrac{1}{x-1}-\dfrac{2x}{\left(x-1\right)\left(x^2+1\right)}\)

\(A=\dfrac{x^2+1-2x}{\left(x-1\right)\left(x^2+1\right)}\)

\(A=\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x^2+1\right)}\)

\(A=\dfrac{x-1}{x^2+1}\)

b.\(A=0,2=\dfrac{1}{5}\)

\(\Leftrightarrow\dfrac{x-1}{x^2+1}=\dfrac{1}{5}\)

\(\Leftrightarrow x^2+1=5x-5\)

\(\Leftrightarrow x^2-5x+6=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)

c.\(A< 0\) mà \(x^2+1\ge1>0\)

--> A<0 khi \(x-1< 0\)

                  \(\Leftrightarrow x< 1\)

29 tháng 4 2022

a. -ĐKXĐ:\(x\ne\pm1\)

\(A=\dfrac{1}{x-1}-\dfrac{x^2+x}{x^2+1}.\left(\dfrac{1}{x-1}-\dfrac{1}{x+1}\right)\)

\(=\dfrac{1}{x-1}-\dfrac{x\left(x+1\right)}{x^2+1}.\left(\dfrac{x+1}{\left(x-1\right)\left(x+1\right)}-\dfrac{x-1}{\left(x-1\right)\left(x+1\right)}\right)\)

\(=\dfrac{1}{x-1}-\dfrac{x\left(x+1\right)}{x^2+1}.\dfrac{x+1-x+1}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{1}{x-1}-\dfrac{x\left(x+1\right)}{x^2+1}.\dfrac{2}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{1}{x-1}-\dfrac{2x}{\left(x^2+1\right)\left(x-1\right)}\)

\(=\dfrac{x^2+1}{\left(x^2+1\right)\left(x-1\right)}-\dfrac{2x}{\left(x^2+1\right)\left(x-1\right)}\)

\(=\dfrac{\left(x-1\right)^2}{\left(x^2+1\right)\left(x-1\right)}=\dfrac{x-1}{x^2+1}\)

b. \(A=\dfrac{x-1}{x^2+1}=0,2\)

\(\Leftrightarrow\dfrac{x-1}{x^2+1}=\dfrac{1}{5}\)

\(\Leftrightarrow\dfrac{5\left(x-1\right)}{5\left(x^2+1\right)}=\dfrac{x^2+1}{5\left(x^2+1\right)}\)

\(\Rightarrow5x-5=x^2+1\)

\(\Leftrightarrow x^2-5x+1+5=0\)

\(\Leftrightarrow x^2-5x+6=0\)

\(\Leftrightarrow x^2-2x-3x+6=0\)

\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(nhận\right)\\x=3\left(nhận\right)\end{matrix}\right.\)

c. \(A=\dfrac{x-1}{x^2+1}< 0\)

\(\Leftrightarrow x-1< 0\) (vì \(x^2+1>0\forall x\))

\(\Leftrightarrow x< 1\)

 

7 tháng 8 2021

5 D

6 B

7 C

8 C

9 C

10 D

11 A

12 B

13 C

14 C

15 C

16 B

17 D

2 tháng 11 2021

Câu 2:

a, Vì m⊥MN và n⊥MN nên m//n

b, Vì m//n nên \(\widehat{D_1}=\widehat{C}=45^0\) (so le trong)

c, Vì m//n nên \(\widehat{D_1}=\widehat{C_1}\) (đồng vị)

2 tháng 11 2021

Chắc ko ạ

14 tháng 9 2021

a) Cường độ dòng điện I1 là:

Ta có: \(I_1=\dfrac{U_1}{R_1}=\dfrac{30}{15}=2\left(A\right)\)

Cường độ dòng điện I2 là:

Ta có: \(I_2=\dfrac{U_2}{R_2}=\dfrac{45}{30}=1,5\left(A\right)\)

Vì I1>I2 (2>1,5) mà Rnt R2 thì chọn Imax = I1 = I2 = 1,5 A

b, Hiệu điện thế tối da là:

Ta có: \(U_{max}=I_{max}\left(R_1+R_2\right)=1,5.\left(15+30\right)=67,5\left(V\right)\)

14 tháng 9 2021

a/ Cddd tối đa của R1: I1 = 30/15 = 2A; của R2: I2 = 45/30=1,5A

=> cddd tối đa của mạch là I2 = 1,5A

b/

U = I2.(R1+R2) = 67,5V

28 tháng 6 2023

\(a,A=0,2\left(5x-1\right)-\dfrac{1}{2}\left(\dfrac{2}{3}x+4\right)+\dfrac{2}{3}\left(3-x\right)\)

\(=x-0,2-\dfrac{1}{3}x-2+2-\dfrac{2}{3}x\)

\(=\left(-0,2-2+2\right)+\left(x-\dfrac{1}{3}x-\dfrac{2}{3}x\right)\)

\(=-0,2\)

\(b,B=\left(x-2y\right)\left(x^2+2xy+4y^2\right)-\left(x^3-8y^3+10\right)\)

\(=x^3-8y^3-x^3+8y^3-10\)

\(=-10\)

\(c,C=4\left(x+1\right)^2+\left(2x-1\right)^2-8\left(x-1\right)\left(x+1\right)-4x\)

\(=4\left(x^2+2x+1\right)+\left(4x^2-4x+1\right)-8\left(x^2-1\right)-4x\)

\(=4x^2+8x+4+4x^2-4x+1-8x^2+8-4x\)

\(=13\)

 

28 tháng 6 2023

a) \(A=0,2\left(5x-1\right)-\dfrac{1}{2}\left(\dfrac{2}{3}x+4\right)+\dfrac{2}{3}\left(3-x\right)\)

\(A=x-\dfrac{1}{5}-\dfrac{1}{3}x-2+2-\dfrac{2}{3}x\)

\(A=\left(x-\dfrac{1}{3}x-\dfrac{2}{3}x\right)-\left(\dfrac{1}{5}+2-2\right)\)

\(A=-\dfrac{1}{5}\)

Vậy: ...

b) \(B=\left(x-2y\right)\left(x^2+2xy+4y^2\right)-\left(x^3-8y^3+10\right)\)

\(B=\left[x^3-\left(2y\right)^3\right]-\left[x^3-\left(2y\right)^3\right]-10\)

\(B=-10\)

Vậy: ...

c) \(4\left(x+1\right)^2+\left(2x-1\right)^2-8\left(x+1\right)\left(x-1\right)-4x\)

\(=4\left(x^2+2x+4\right)+\left(4x^2-4x+1\right)-8\left(x^2-1\right)-4x\)

\(=4x^2+8x+4+4x^2-4x+1-8x^2+8-4x\)

\(=\left(4x^2+4x^2-8x^2\right)+\left(8x-4x-4x\right)+\left(4+1+8\right)\)

\(=13\)

Vậy:...

1) \(A=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{x\sqrt{x}-1}:\dfrac{\sqrt{x}-1}{5}\)

        \(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{5}{\sqrt{x}-1}\) \(=\dfrac{5}{x+\sqrt{x}+1}\)

2) Ta thấy \(x+\sqrt{x}+1=\sqrt{x}\left(\sqrt{x}+1\right)+1>1\forall x\)

\(\Rightarrow A< 5\)