K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2019

Thay  x   =   − 1 vào hàm số f x   =   6 x 4 ta được  f − 1   =   6.   − 1 4   =   6

Thay  x = 2 3  vào hàm số  h ( x )   =   7   −   3. x 2 ta được  h ( x )   =   7   −   3. x 2

Nên f − 1   =   h 2 3  

Đáp án cần chọn là: A

13 tháng 1 2019

Đáp án D

Thay x = -2 vào hàm số f(x) = -2 x 3   ta được f(-2) = -2.(-2) = 16 .

Thay x = -1 vào hàm số h(x) = 10 - 3x ta được h(-1) = 10 - 3.(-1) = 13.

Nên f(-2) > h(-1).

26 tháng 10 2019

Đáp án D

Thay x = -2 vào hàm số f(x) = -2 x 3   ta được f(-2) = -2.(-2) = 16 .

Thay x = -1 vào hàm số h(x) = 10 - 3x ta được h(-1) = 10 - 3.(-1) = 13.

Nên f(-2) > h(-1) .

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Hệ số a là: a=1

\(f(0) = {0^2} - 4.0 + 3 = 3\)

\(f(1) = {1^2} - 4.1 + 3 = 0\)

\(f(2) = {2^2} - 4.2 + 3 =  - 1\)

\(f(3) = {3^2} - 4.3 + 3 = 0\)

\(f(4) = {4^2} - 4.4 + 3 = 3\)

=> f(0); f(4) cùng dấu với hệ số a; f(2) khác dấu với hệ số a

b) Nhìn vào đồ thị ta thấy

- Trên khoảng \(\left( { - \infty ;1} \right)\) đồ thị nằm phía trên trục hoành

- Trên khoảng \(\left( {1;3} \right)\), đồ thị nằm phía dưới trục hoành

- Trên khoảng \(\left( {3; + \infty } \right)\), đồ thị nằm phía trên trục hoành

c) - Trên khoảng \(\left( { - \infty ;1} \right)\) đồ thị nằm phía trên trục hoành => f(x)>0, cùng dầu với hệ số a

- Trên khoảng \(\left( {1;3} \right)\), đồ thị nằm phía dưới trục hoành => f(x) <0, khác dấu với hệ số a

- Trên khoảng \(\left( {3; + \infty } \right)\), đồ thị nằm phía trên trục hoành => f(x)>0, cùng dấu với hệ số a

17 tháng 5 2022

f(-3/2) = 1 - 2.(-3/2) = 1 - -3 = 4

f(3/2) = 1 - 2.(3/2) = 1 - 3 = -2

=> f(-3/2) > f(3/2)

17 tháng 5 2022

:D

Vì hàm số f(x)=5x-2 đồng biến trên R nên nếu \(x_1< x_2\) thì \(y_1< y_2\)

mà \(3>\sqrt{8}\)

nên \(f\left(3\right)>f\left(\sqrt{8}\right)\)

19 tháng 7 2021

Ta có : \(f\left(3\right)=5\sqrt{9}-2\)

\(f\left(\sqrt{8}\right)=5\sqrt{8}-2\)

=> \(f\left(3\right)>f\left(8\right)\)

Vì f(x)=5x-2 đồng biến trên R nên khi \(x_1< x_2\) thì \(y_1< y_2\)

mà \(3>\sqrt{8}\)

nên \(f\left(3\right)>f\left(\sqrt{8}\right)\)