K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Vì hàm số f(x)=5x-2 đồng biến trên R nên nếu \(x_1< x_2\) thì \(y_1< y_2\)

mà \(3>\sqrt{8}\)

nên \(f\left(3\right)>f\left(\sqrt{8}\right)\)

19 tháng 7 2021

Ta có : \(f\left(3\right)=5\sqrt{9}-2\)

\(f\left(\sqrt{8}\right)=5\sqrt{8}-2\)

=> \(f\left(3\right)>f\left(8\right)\)

Vì f(x)=5x-2 đồng biến trên R nên khi \(x_1< x_2\) thì \(y_1< y_2\)

mà \(3>\sqrt{8}\)

nên \(f\left(3\right)>f\left(\sqrt{8}\right)\)

AH
Akai Haruma
Giáo viên
22 tháng 9 2021

Lời giải:

Vì $2>0$ nên $f(x)=2x-1$ là hàm đồng biến trên $R$
$\sqrt{3}-2-(\sqrt{5}-3)=1+\sqrt{3}-\sqrt{5}=1-\frac{2}{\sqrt{3}+\sqrt{5}}> 1-\frac{2}{1+1}=0$

$\Rightarrow \sqrt{3}-2> \sqrt{5}-3$

Vì hàm đồng biến nên $f(\sqrt{3}-2)> f(\sqrt{5}-3)$

24 tháng 11 2021

\(y=f\left(x\right)=\left(\sqrt{3}+1\right)x-5\)

Vì \(\sqrt{3}+1>0\) nên hs đồng biến trên R

Mà \(2+\sqrt{3}< 3+\sqrt{3}\)

Vậy \(f\left(2+\sqrt{3}\right)< f\left(3+\sqrt{3}\right)\)

5 tháng 12 2017

Hàm số y = -1,5 x 2  có a = -1,5 < 0

Vậy hàm số đồng biến trong khoảng x < 0, nghịch biến trong khoảng x > 0

Suy ra : f(-1,5) < f(-0,5), f(0,75) > f(1,5)

Ta có: 1<2

nên \(1-\sqrt{2}< 2-\sqrt{2}\)

\(\Leftrightarrow f\left(1-\sqrt{2}\right)>f\left(2-\sqrt{2}\right)\)(Vì hàm số y=f(x)=-x+4 nghịch biến trên R nên nếu \(x_1< x_2\) thì \(f\left(x_1\right)>f\left(x_2\right)\))

15 tháng 2 2021

Ta có \(1-\sqrt{2}< 2-\sqrt{2}\) \(\Rightarrow-\left(1-\sqrt{2}\right)>-\left(2-\sqrt{2}\right)\) \(\Rightarrow-\left(1-\sqrt{2}\right)+4>-\left(2-\sqrt{2}\right)+4\) Mà \(f\left(1-\sqrt{2}\right)=-\left(1-\sqrt{2}\right)+4,f\left(2-\sqrt{2}\right)=-\left(2-\sqrt{2}\right)+4\)

\(\Rightarrow f\left(1-\sqrt{2}\right)>f\left(2-\sqrt{2}\right)\)

Câu 1: 

a) 

\(y=f\left(x\right)=2x^2\)-5-3035
f(x)501801850

b) Ta có: f(x)=8

\(\Leftrightarrow2x^2=8\)

\(\Leftrightarrow x^2=4\)

hay \(x\in\left\{2;-2\right\}\)

Vậy: Để f(x)=8 thì \(x\in\left\{2;-2\right\}\)

Ta có: \(f\left(x\right)=6-4\sqrt{2}\)

\(\Leftrightarrow2x^2=6-4\sqrt{2}\)

\(\Leftrightarrow x^2=3-2\sqrt{2}\)

\(\Leftrightarrow x=\sqrt{3-2\sqrt{2}}\)

hay \(x=\sqrt{2}-1\)

Vậy: Để \(f\left(x\right)=6-4\sqrt{2}\) thì \(x=\sqrt{2}-1\)