tìm gtnn của A=2015/|x|-3 với x là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT:`|A|+|B|>=|A+B|`
`=>|x-2017|+|x-2015|=|x-2017|+|2015-x|>=2`
Mà `|x-2016|>=0`
`=>P>=2`
Dấu "=" xảy ra khi $\begin{cases}2015 \leq x \leq 2017\\x=2016\end{cases}$
`<=>x=2016`
Để toi giải thích: Dấu = bđt |A|+|B|≥|A+B| xảy ra khi AB≥0
Nên trong bài dấu bằng xảy ra khi (x-2017)(2015-x)≥0 và x-2016=0
<=> 2017≥x≥2015 và x=2016
=>x=2016 ( 2017≥x≥2015 chỉ là một điều kiện thôi,với cả x không nguyên nên trong khoảng này có rất nhiều x thỏa mãn)
Còn bài bạn dưới, x=2015 hoặc 2017 làm P=3 >2 => không phải giá trị của x để P nhỏ nhất
a) xx là x^2 hả ??? (tính sau nha)
b)Ta có \(\left|x-100\right|\ge0;\left|y+200\right|\ge0\)
\(\Rightarrow\left|x-100\right|+\left|y+200\right|\ge0\)
\(\Rightarrow B\ge-1\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|x-100\right|=0\\\left|y+200\right|=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x-100=0\\y+200=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=100\\y=-200\end{cases}}\)
Vậy \(B_{min}=-1\Leftrightarrow\hept{\begin{cases}x=100\\y=-200\end{cases}}\)
c)pt o có GTLN
Tham khảo(nếu a ko có xx)
https://olm.vn/hoi-dap/detail/97637814260.html
a) Ta có /x+2/\(\ge\)0 với \(\forall\)x
nên /x+2/+50\(\ge\)0 với mọi x
Dấu "=" xảy ra \(\Leftrightarrow\)/x+2/=0
\(\Leftrightarrow\)x=\(-2\)
Vậy GTNN của A là 50 khi x=\(-2\)
b)Ta có /x-100/\(\ge\)0 với mọi x
/y+200/\(\ge\)0 với mọi x
nên /x-100/+/y+200/-1\(\ge\)-1 với mọi x
Dấu"=" xảy ra \(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=100\\y=-200\end{matrix}\right.\)
Vậy GTNN của B=-1 khi x=100;y=-200
c)Ta có \(-\)/x+5/\(\le\)0 với mọi x
nên 2015\(-\)/x+5/\(\le\)2015 với mọi x
Dấu"=" xảy ra\(\Leftrightarrow\)x=\(-5\)
Vậy GTLN của bt trên là 2015 khi x=\(-5\)
\(A=\left|2x-2\right|+\left|2x-2003\right|\)
\(=\left|2x-2\right|+\left|2003-2x\right|\)
=>\(A>=\left|2x-2+2003-2x\right|=2001\)
Dấu '=' xảy ra khi (2x-2)(2x-2003)<=0
TH1: \(\left\{{}\begin{matrix}2x-2>=0\\2x-2003< =0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=1\\x< =\dfrac{2003}{2}\end{matrix}\right.\)
=>\(1< =x< =\dfrac{2003}{2}\)
TH2: \(\left\{{}\begin{matrix}2x-2< =0\\2x-2003>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x>=2003\\2x< =2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=\dfrac{2003}{2}\\x< =1\end{matrix}\right.\Leftrightarrow Loại\)
Vậy: \(A_{min}=2001\) khi 1<=x<=2003/2