K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2016

giải  pt tìm  x1 ; x 2 theo m

sau đó giải BPT tìm m  thối.x1>1 và x2 < 6

7 tháng 1 2016

denta= (2m-3)^2 -4(m^2-3m)=9>0 => pt luôn có 2 nghiệm phân biệt với mọi x 
*x1=[2m-3+9]/2=m+3 
*x2=[2m-3-9]/2=m-6 
Theo bài ra ta có: hai nghiệm x1, x2 cùng dương <=> P>0 và S>0 
=> m>3 thì hai nghiệm x1, x2 luôn cùng dương.

9 tháng 1 2016

dùng hệ thức vi ét để biến đổi a/A= -3m^2 +2m +32=-3(m^2-2/3.m-32/3)=-3(m-1/3)^2-95/3 <= -95/3

                                            b/B=(2m+8)^2-3(m^2-8) rồi làm tương tự

 

25 tháng 1 2016

dùng vi ét đc k bạn 

25 tháng 1 2016

Tuấn đc

28 tháng 5 2019

có ai chơi minecraft bedwar sever 3fmc.com ko chơi thì kb nha tui là Bluebood_VN

28 tháng 5 2019

pt \(x^2-2mx+m^2-2m=0\) có \(\Delta'=\left(-m\right)^2-\left(m^2-2m\right)=2m\)

Để pt có hai nghiệm phân biệt x1, x2 thì \(\Delta'>0\)\(\Leftrightarrow\)\(m>0\)

Ta có : \(\sqrt{x_1}+\sqrt{x_2}=3\)\(\Leftrightarrow\)\(x_1+x_2+2\sqrt{x_1x_2}=9\) (*) 

Theo định lý Vi-et ta có : \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m^2-2m\end{cases}}\)

(*) \(\Leftrightarrow\)\(2m+2\sqrt{m^2-2m}=9\)

\(\Leftrightarrow\)\(4\left(m^2-2m\right)=\left(9-2m\right)^2\)

\(\Leftrightarrow\)\(4m^2-8m=81-36m+4m^2\)

\(\Leftrightarrow\)\(28m=81\)

\(\Leftrightarrow\)\(m=\frac{81}{28}\) ( tm ) 

... 

15 tháng 1 2016

dùng đelte

 

15 tháng 1 2016

Tuấn làm ra lun cho mk xem đi, mk làm rồi nhưng ko biết có đúng ko?

30 tháng 1 2016

+b2 - 4ac > 0

+x1 - x2 = 5 

+ x12 - x23 =5[(x1-x2)2 -3x1x2] =35 => 25 - 3 x1x2 =7 => - x1.x2 = -6

=> x1 ; - x2 là nghiệm của pt : X2 -5X - 6 =0 => X1 =-1 ; -X2 = 6 hoặc x1 = 6 ; -x2 =-1

+ x1 = -1 ; x2 =-6 => a = 7 ; b = 6

+ x1 =6 ; x2 = 1 => a =-7 ; b = 6

30 tháng 1 2016

sai đề bài rùi kìa phải là ax mà

4 tháng 1 2022

PT có 2 nghiệm phân biệt \(\Leftrightarrow\Delta=\left(2m-3\right)^2-4\left(m-3\right)=9>0\)

Vậy PT có 2 nghiệm phân biệt với mọi m

Ta có \(\left[{}\begin{matrix}x_1=\dfrac{2m-3+3}{2}=m\\x_2=\dfrac{2m-3-3}{2}=m-3\end{matrix}\right.\)

Ta thấy \(m>m-3\) nên \(1< m-3< m< 6\Leftrightarrow4< m< 6\)

Vậy \(4< m< 6\)  thỏa yêu cầu đề

|x1|=3|x2|

=>|2m+2-x2|=|3x2|

=>4x2=2m+2 hoặc -2x2=2m+2

=>x2=1/2m+1/2 hoặc x2=-m-1

Th1: x2=1/2m+1/2

=>x1=2m+2-1/2m-1/2=3/2m+3/2

x1*x2=m^2+2m

=>1/2(m+1)*3/2(m+1)=m^2+2m

=>3/4m^2+3/2m+3/4-m^2-2m=0

=>m=1 hoặc m=-3

TH2: x2=-m-1 và x1=2m+2+m+1=3m+3

x1x2=m^2+2m

=>-3m^2-6m-3-m^2-2m=0

=>m=-1/2; m=-3/2

AH
Akai Haruma
Giáo viên
13 tháng 5 2019

Lời giải:

1.

Để pt có 2 nghiệm phân biệt thì:

\(\Delta=(2m-1)^2-4(m^2-1)=5-4m>0\)

\(\Leftrightarrow m< \frac{5}{4}\)

2.

Với \(m< \frac{5}{4}\), áp dụng định lý Vi-et: \(\left\{\begin{matrix} x_1+x_2=2m-1\\ x_1x_2=m^2-1\end{matrix}\right.\)

Khi đó:

\((x_1-x_2)^2=x_1-3x_2\)

\(\Leftrightarrow (x_1+x_2)^2-4x_1x_2=(x_1+x_2)-4x_2\)

\(\Leftrightarrow (2m-1)^2-4(m^2-1)=2m-1-4x_2\)

\(\Leftrightarrow 5-4m=2m-1-4x_2\)

\(\Leftrightarrow x_2=\frac{3-3m}{2}\)

\(\Rightarrow x_1=2m-1-x_2=\frac{7m-5}{2}\)

\(\Rightarrow x_1x_2=\frac{(3-3m)(7m-5)}{4}=m^2-1\)

\(\Rightarrow \left[\begin{matrix} m=\frac{11}{25}\\ m=1\end{matrix}\right.\) (giải pt bậc 2 đơn giản)

Thử lại thấy thỏa mãn. Vậy..........

\(\Rightarrow \)

15 tháng 1 2016

Để pt có hai nghiệm phân biệt âm cần :

m khác 1 

\(\Delta'=\left(m-1\right)^2-\left(m-1\right)m>0\)

\(x1+x2=\frac{-2\left(m-1\right)}{m-1}<0\left(luônđúng\right)\)

\(x1\cdot x2=\frac{-m}{\left(m-1\right)}<0\)

15 tháng 1 2016

đê pt có 2 nghiệm đều âm thì

s<0 và p>0

-2(m-1)/(m-2)<0<=>hai trường hợp

th1: m<1;m<2=>m<1 và -m/(m+1)>0<=>2 trường hợp

             .m<0;m>-1<=>-1<m<0

             .m>0;m<-1<=>m<-1 hoặc m>0

th2 tương tự