Phân tích đa thức thành nhân tử:
\(x^3-2x^2+6x-5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xy+3x-7y-21
=x(y+3)-7(x+3)
=(x-7)(y+3)
b)2xy-15-6x-5y
=2x(y-3)-5(-3+y)
=(2x-5)(y-3)
c)2x^2y+2xy^2-2x-2y
=2x(xy-1)+2y(xy-1)
=(2x+2y)(xy-1)
x(x+3)-5x(x-5)-5(x+3)
=(x-5)(x+3)-5x(x-5)
=(x-5)(x+3-5x)
Câu cuối mình bị nhầm dòng cuối phải là (x-5)(x+3+x-5)=(x-5)(2x-2)nha bạn
\(=x\left(2x^2-x-6\right)\)
\(=x\left(2x^2-4x+3x-6\right)\)
\(=x\left[2x\left(x-2\right)+3\left(x-2\right)\right]\)
\(=x\left(x-2\right)\left(2x+3\right)\)
x(2x^2-x-6)
x(2x^2-4x+3x-6)
x[2x(x-2)+3(x-2)]
x(2x+3)(x-2)
2x^5-6x^4-2a^2x^3-6ax^3
=(2x^5-2a^2x^3)-(6x^4+6ax^3)
=2x^3(x^2-a^2)-6x^3(x+a)
=2x^3(x-a)(x+a)-6x^3(x+a)
=(x+a)(2x^4-2x^3a-6x^3)
=(x+a) 2x^3 (x-a-3)
x3 - 2x2 + 6x - 5 = x3 - x2 - x2 + x + 5x - 5 = x2(x - 1) - x(x - 1) + 5(x - 1) = (x2 - x + 5)(x - 1)
\(a,=5x^2-5x+3x-3=\left(x-1\right)\left(5x+3\right)\\ b,=2x^2-5x+2x-5=\left(2x-5\right)\left(x+1\right)\\ c,=x^2+5x-3x-15=\left(x+5\right)\left(x-3\right)\\ d,=7x^2-7x+x-1=\left(x-1\right)\left(7x+1\right)\)
Thợ Đào Mỏ Panda, mày bị điên à, không biết còn trả lời làm cái quái gì
\(2x^4+x^3-6x^2+x+2\)
= \(2x^4+4x^3-3x^3-6x^2+x+2\)
= \(2x^3\left(x+2\right)-3x^2\left(x+2\right)+\left(x+2\right)\)
= \(\left(x+2\right)\left(2x^3-3x^2+1\right)\)
=\(\left(x+2\right)\left(2x^3-2x^2-x^2+1\right)\)
=\(\left(x+2\right)\left(2x^2\left(x-1\right)-\left(x+1\right)\left(x-1\right)\right)\)
=\(\left(x+2\right)\left(x-1\right)\left(2x^2-x-1\right)\)
= \(\left(x+2\right)\left(x-1\right)\left(2x^2-2x+x-1\right)\)
=\(\left(x+2\right)\left(x-1\right)\left(2x\left(x-1\right)+\left(x-1\right)\right)\)
=\(\left(x+2\right)\left(2x+1\right)\left(x-1\right)^2\)
a) x3-2x2-x+2
=x(x2-1)+2(-x2+1)
=x(x2-1)-2(x2-1)
=(x2-1)(x-2)
b)
x2+6x-y2+9
=x2+6x+9-y2
=(x+3)2-y2
=(x+3-y)(x+3+y)
\(=x^4-x^3+3x^3-3x^2+3x^2-3x+9x-9\\ =\left(x-1\right)\left(x^3+3x^2+3x+9\right)\\ =\left(x-1\right)\left(x+3\right)\left(x^2+3\right)\)
\(x^4+2x^3+6x-9=x^3\left(x-1\right)+3x^2\left(x-1\right)+3x\left(x-1\right)+9\left(x-1\right)\)
\(=\left(x-1\right)\left(x^3+3x^2+3x+9\right)\)
\(=\left(x-1\right)\left[x^2\left(x+3\right)+3\left(x+3\right)\right]\)
\(=\left(x-1\right)\left(x+3\right)\left(x^2+3\right)\)
\(x^3-2x^2+6x-5\)
\(=x^3-x^2-x^2+x+5x-5\)
\(=x^2\left(x-1\right)-x\left(x-1\right)+5\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-x+5\right)\)
\(x^3-2x^2+6x-5\)
\(=x^3-x^2-x^2+x+5x-5\)
\(=\left(x^3-x^2\right)-\left(x^2-x\right)+\left(5x-5\right)\)
\(=x^2.\left(x-1\right)-x.\left(x-1\right)+5.\left(x-1\right)\)
\(=\left(x-1\right).\left(x^2-x+5\right)\)