Cho n là số nguyên dương thỏa mãn 3 C n 2 + 2 A n 2 = 3 n 2 + 15 . Tìm hệ số của số hạng chứa x10 trong khai triển 2 x 3 - 3 x 2 n , x ≠ 0
A. 1088640
B. 1088460
C. 1086408
D. 1084608
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C^1_n+C^2_n=15\)
=>\(n+\dfrac{n!}{\left(n-2\right)!\cdot2!}=15\)
=>\(n+\dfrac{n^2-n}{2}=15\)
=>2n+n^2-n=30
=>n^2+n-30=0
=>n=5
=>(x+2/x^4)^5
SHTQ là: \(C^k_5\cdot x^{5-k}\cdot\left(\dfrac{2}{x^4}\right)^k=C^k_5\cdot x^{5-5k}\cdot2^k\)
SỐ hạng ko chứa x tương ứng với 5-5k=0
=>k=1
=>Số hạng đó là 5*2=10
Đáp án C
Phương pháp:
+) Công thức khai triển nhị thức Newton:
+)
Cách giải:
Với n =15:
Hệ số chứa x 10 ứng với i = 10 và bằng