K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2018

 Số hạng chứa x6y14 trong khai triển (x+5y)20 là C2014.x6.(5y)14= 514.C2014.x6.y14 nên hệ số của x6y14 là 514. C2014

Chọn B

11 tháng 12 2021

a: k=4

b: y=4x

NV
5 tháng 11 2019

\(\left(x+2.x^{-2}\right)^6=\sum\limits^6_{k=0}C_6^kx^k.2^{6-k}.\left(x^{-2}\right)^{6-k}=\sum\limits^6_{k=0}C_6^k2^{6-k}x^{3k-12}\)

Số hạng chứa \(x^3\Rightarrow3k-12=3\Rightarrow k=5\)

\(\Rightarrow\) Hệ số: \(C_6^5.2^1=12\)

\(\left(3-2x\right)^{15}=\sum\limits^{15}_{k=0}C_{15}^k3^k.\left(-2\right)^{15-k}.x^{15-k}\)

Số hạng chứa \(x^7\Rightarrow15-k=7\Rightarrow k=8\)

\(\Rightarrow\) Hệ số: \(C_{15}^8.3^8.\left(-2\right)^7\)

\(\left(2x-x^{-2}\right)^6=\sum\limits^6_{k=0}C_6^k2^k.x^k.\left(-1\right)^{6-k}.\left(x^{-2}\right)^{6-k}=\sum\limits^6_{k=0}C_6^k2^k\left(-1\right)^{6-k}.x^{3k-12}\)

Số hạng ko chứa x \(\Rightarrow3k-12=0\Rightarrow k=4\)

Hệ số: \(C_6^42^4\left(-1\right)^2=240\)

NV
8 tháng 12 2021

Xét khai triển: \(\left(2x-1\right)^n\) với \(n\ge5\)

SHTQ: \(C_n^k.\left(2x\right)^k.\left(-1\right)^{n-k}=C_n^k.2^k.\left(-1\right)^{n-k}.x^k\)

Số hạng chứa \(x^5\Rightarrow k=5\) có hệ số \(C_n^5.2^5.\left(-1\right)^{n-5}\)

Do đó hệ số của \(x^5\) trong khai triển đã cho là:

\(C_5^5.2^5.\left(-1\right)^0+C_6^5.2^5.\left(-1\right)^1+C_7^5.2^5.\left(-1\right)^2=...\)

19 tháng 12 2022

1) \(\left(1+x\right)^6=\sum\limits^6_{k=0}C^k_6x^k\)

Số hạng chứa \(x^4\) có \(k=4\)

Hệ số của \(x^4\) trong khai triển là: \(C_6^4=15\).

2) 

\(n\left(\Omega\right)=C_{20}^2=190\)

A: "Hai quả được chọn khác màu"

\(\overline{A}\): "Hai quả được chọn cùng màu".

\(n\left(\overline{A}\right)=C_{15}^2+C_5^2=115\)

\(n\left(A\right)=190-115=75\)

\(P\left(A\right)=\dfrac{75}{190}=\dfrac{15}{38}\)

\(C^1_n+C^2_n=15\)

=>\(n+\dfrac{n!}{\left(n-2\right)!\cdot2!}=15\)

=>\(n+\dfrac{n^2-n}{2}=15\)

=>2n+n^2-n=30

=>n^2+n-30=0

=>n=5

=>(x+2/x^4)^5

SHTQ là: \(C^k_5\cdot x^{5-k}\cdot\left(\dfrac{2}{x^4}\right)^k=C^k_5\cdot x^{5-5k}\cdot2^k\)

SỐ hạng ko chứa x tương ứng với 5-5k=0

=>k=1

=>Số hạng đó là 5*2=10

NV
8 tháng 12 2021

Xét khai triển: \(\left(x+1\right)^n\) với \(n\ge5\)

SHTQ: \(C_n^k.x^k\)

Số hạng chứa \(x^5\Rightarrow k=5\) có hệ số \(C_n^5\)

Hệ số của \(x^5\) trong khai triển đã cho:

\(C_6^5+C_7^5+C_8^5+...+C_{12}^5=...\)

NV
30 tháng 12 2020

\(\left(1+x\right)^6\left(1+x^2\right)^5=\sum\limits^6_{k=0}C_k^6x^k\sum\limits^5_{i=0}C_5^ix^{2i}=\sum\limits^6_{k=0}\sum\limits^5_{i=0}C_6^kC_5^ix^{2i+k}\)

Số hạng chứa \(x^7\Rightarrow\left\{{}\begin{matrix}0\le k\le6\\0\le i\le5\\2i+k=7\end{matrix}\right.\)

\(\Rightarrow\left(i;k\right)=\left(1;5\right);\left(2;3\right);\left(3;1\right)\)

Hệ số: \(C_5^1C_6^5+C_5^2C_6^3+C_5^3C_6^1=...\)

NV
12 tháng 12 2021

\(\left(x-a\right)^3\left(x+b\right)^6=\sum\limits^3_{k=0}C_3^kx^k.\left(-a\right)^{3-k}.\sum\limits^6_{i=0}C_6^ix^i.b^{6-i}=\sum\limits^3_{k=0}\sum\limits^6_{i=0}x^{k+i}C_3^kC_6^i\left(-a\right)^{3-k}.b^{6-i}\)

Số hạng chứa \(x^7\Rightarrow\left\{{}\begin{matrix}0\le k\le3\\0\le i\le6\\k+i=7\end{matrix}\right.\) 

\(\Rightarrow\left(k;i\right)=\left(1;6\right);\left(2;5\right);\left(3;4\right)\)

\(\Rightarrow C_3^1C_6^6\left(-a\right)^2+C_3^2C_6^5\left(-a\right).b+C_3^3C_6^4b^2=-36\)

\(\Rightarrow3a^2-18ab+15b^2=-36\Rightarrow a^2-6ab+5b^2=-12\) (1)

Số hạng chứa \(x^8\Rightarrow k+i=8\)

\(\Rightarrow\left(k;i\right)=\left(2;6\right);\left(3;5\right)\)

Do ko có số hạng chứa \(x^8\Rightarrow\) hệ số của số hạng chứa \(x^8\) bằng 0

\(\Rightarrow C_3^2C_6^6\left(-a\right)+C_3^3C_6^5.b=0\)

\(\Rightarrow-3a+6b=0\Rightarrow b=\dfrac{a}{2}\)

Thế vào (1):

\(\Rightarrow a^2-3a^2+\dfrac{5}{4}a^2=-12\)

\(\Rightarrow a^2=16\Rightarrow a=\pm4\)

12 tháng 12 2021

Em cảm ơn thầy nhiều ạ

NV
12 tháng 12 2020

Câu 8 là \(\left(8a^2-\dfrac{1}{2}b\right)^6\) hay \(\left(8a^2-\dfrac{1}{2b}\right)^6\) bạn? (tốt nhất là bạn dùng tính năng gõ công thức toán để đăng đề, hoặc chụp hình gửi đề trực tiếp lên, hiện nay hoc24 đã cho đăng đề bằng hình ảnh)

9.

\(\left(x+8.x^{-2}\right)^9=\sum\limits^9_{k=0}C_9^kx^{9-k}.8^k.x^{-2k}=\sum\limits^9_{k=0}C_9^k8^kx^{9-3k}\)

Số hạng ko chứa x \(\Rightarrow9-3k=0\Rightarrow k=3\)

Số hạng đó là: \(C_9^3.8^3=...\)