Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Làm xong rồi nhấn gửi thì lỗi, làm lại từ đầu nên chỉ làm 2 câu thôi, 2 câu sau bạn tự làm tương tự:
a/ \(\sum\limits^8_{k=0}C_8^kx^{2k}\left(1-x\right)^k=\sum\limits^8_{k=0}\sum\limits^k_{i=0}C_8^kC_k^i\left(-1\right)^ix^{2k+i}\)
Số hạng chứa \(x^8\) có:
\(\left\{{}\begin{matrix}2k+i=8\\0\le i\le k\le8\\i;k\in N\end{matrix}\right.\) \(\Rightarrow\left(i;k\right)=\left(0;4\right);\left(2;3\right)\)
Hệ số: \(C_8^4C_4^0.\left(-1\right)^0+C_8^3C_3^2.\left(-1\right)^2\)
b/ \(1+x+x^2+x^3=\left(1+x\right)\left(1+x^2\right)\)
\(\Rightarrow\left(1+x+x^2+x^3\right)^{10}=\left(1+x\right)^{10}\left(1+x^2\right)^{10}\)
\(=\sum\limits^{10}_{k=0}C_{10}^kx^k\sum\limits^{10}_{i=0}C_{10}^ix^{2i}=\sum\limits^{10}_{k=0}\sum\limits^{10}_{i=0}C_{10}^kC_{10}^ix^{2i+k}\)
Số hạng chứa \(x^5\) có:
\(\left\{{}\begin{matrix}2i+k=5\\0\le k\le10\\0\le i\le10\\i;k\in N\end{matrix}\right.\) \(\Rightarrow\left(i;k\right)=\left(0;5\right);\left(1;3\right);\left(2;1\right)\)
Hệ số: \(C_{10}^0C_{10}^5+C_{10}^1C_{10}^3+C_{10}^2C_{10}^1\)
\(x\left(....+3x+...\right)+x^2\left(.....-32\right)=......+3x^2-32x^2=-29x^2\)
\(\left(x^{-4}+x^{\frac{5}{2}}\right)^{12}\) có SHTQ: \(C_{12}^kx^{-4k}.x^{\frac{5}{2}\left(12-k\right)}=C^k_{12}x^{30-\frac{13}{2}k}\)
Số hạng chứa \(x^8\Rightarrow30-\frac{13}{2}k=8\Rightarrow\) ko có k nguyên thỏa mãn
Vậy trong khai triển trên ko có số hạng chứa \(x^8\)
b/ \(\left(1-x^2+x^4\right)^{16}\)
\(\left\{{}\begin{matrix}k_0+k_2+k_4=16\\2k_2+4k_4=16\end{matrix}\right.\)
\(\Rightarrow\left(k_0;k_2;k_4\right)=\left(8;8;0\right);\left(9;6;1\right);\left(10;4;2\right);\left(11;2;3\right);\left(12;0;4\right)\)
Hệ số của số hạng chứa \(x^{16}\):
\(\frac{16!}{8!.8!}+\frac{16!}{9!.6!}+\frac{16!}{10!.4!.2!}+\frac{16!}{11!.2!.3!}+\frac{16!}{12!.4!}=...\)
c/ SHTQ của khai triển \(\left(1-2x\right)^5\) là \(C_5^k\left(-2\right)^kx^k\)
Số hạng chứa \(x^4\) có hệ số: \(C_5^4.\left(-2\right)^4\)
SHTQ của khai triển \(\left(1+3x\right)^{10}\) là: \(C_{10}^k3^kx^k\)
Số hạng chứa \(x^3\) có hệ số \(C_{10}^33^3\)
\(\Rightarrow\) Hệ số của số hạng chứa \(x^5\) là: \(C_5^4\left(-2\right)^4+C_{10}^3.3^3\)
\(\left(1+x\right)^{11}=\sum\limits^n_{k=0}.C^k_n.a^{n-k}.b^k\)
\(=\sum\limits^{11}_{k=0}.C^k_{11}.1^{11-k}.x^k\)
Số hạng chứa \(x^7\)
\(\Leftrightarrow k=7\)
Vậy hệ số \(C^7_{11}.1^4\)
Hệ số của \(x^5\) trong khai triển \(P\left(x\right)=x\left(1-2x\right)^5\) chính là hệ số của \(x^4\) trong khai triển \(Q\left(x\right)=\left(1-2x\right)^5=\left(-2x+1\right)^5\)
Số hạng tổng quát trong khai triển \(Q\left(x\right):\) \(C_5^k.\left(-2x\right)^k=C_5^k.\left(-2\right)^k.x^k\)
\(\Rightarrow\) hệ số của số hạng chứa \(x^4\) trong khai triển \(Q\left(x\right)\) là: \(C_5^4.\left(-2\right)^4=80\)
ta có : \(\left(1-3x\right)^n=\sum\limits^n_{k=0}C^k_n\left(1\right)^{n-k}\left(-3\right)^k\left(x^k\right)\)
để có \(x^2\) trong khai triển thì \(k=2\)
khi đó hệ số của số hạng chứa \(x^2\) là \(\)\(C^2_n\left(-3\right)^2=90\)
\(\Leftrightarrow C^2_n=10\Leftrightarrow\dfrac{n!}{2!\left(n-2\right)!}=10\) \(\Leftrightarrow\dfrac{n\left(n-1\right)}{2}=10\)
\(\Leftrightarrow n^2-n-20=0\left[{}\begin{matrix}n=5\left(N\right)\\n=-4\left(L\right)\end{matrix}\right.\) vậy \(n=5\)
Có \(\left(x^5+\dfrac{1}{2}x^2\right)^7=\sum\limits^7_{k=0}.C^k_7.x^{35-5k}.2^{-k}.x^{2k}\\
=\sum\limits^7_{k=0}.C^k_7.2^{-k}.x^{35-3k}\)
Tìm hệ số lớn nhất, tức là ta phải tìm giá trị lớn nhất của ak = \(C^k_7.2^{-k}\) ( k ∈ { 0;1;2;3;4;5;6;7}
ak+1 = \(C^{k+1}_7.2^{-k+1}\)(k ∈ {0;1;2;3;4;5;6}
+) Xét ak < ak+1 (k ∈ {0;1;2;3;4;5;6}
\(< =>C^k_7.2^{-k}< C^{k+1}_7.2^{-k+1}\\ < =>\dfrac{7!}{k!\left(7-k\right)!}< \dfrac{7!.2}{\left(k+1\right)!\left(6-k\right)!}\\ < =>\dfrac{1}{\left(7-k\right)}< \dfrac{2}{\left(k+1\right)}\\ < =>\left(k+1\right)< 14-2k\\ < =>k< 4,33\\ =>\left\{{}\begin{matrix}k< 4,33\\k\in0;1;2;3;4;5;6\\k\in N\end{matrix}\right.=>k\in0;1;2;3;4\)
Do đó: a0 < a1 < a2 < a3 < a4 < a5 (1)
+) Xét ak > ak+1
\(< =>\left(k+1\right)>14-2k\\ < =>k>4,33\\ =>\left\{{}\begin{matrix}k>4,33\\k\in0;1;2;3;4;5;6\\k\in N\end{matrix}\right.=>k\in5;6\)
Do đó a5 > a6 (2)
Từ (1) và (2) => giá trị lớn nhất của a0 ; a1 ; a2 ;...; a7 là a5.
Vậy hệ số lớn nhất trong khai triển là a5
\(\left(1+x\right)^6\left(1+x^2\right)^5=\sum\limits^6_{k=0}C_k^6x^k\sum\limits^5_{i=0}C_5^ix^{2i}=\sum\limits^6_{k=0}\sum\limits^5_{i=0}C_6^kC_5^ix^{2i+k}\)
Số hạng chứa \(x^7\Rightarrow\left\{{}\begin{matrix}0\le k\le6\\0\le i\le5\\2i+k=7\end{matrix}\right.\)
\(\Rightarrow\left(i;k\right)=\left(1;5\right);\left(2;3\right);\left(3;1\right)\)
Hệ số: \(C_5^1C_6^5+C_5^2C_6^3+C_5^3C_6^1=...\)