K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2019

28 tháng 2 2020
https://i.imgur.com/v6W1QWU.jpg
28 tháng 2 2020

ai giup voi

10 tháng 11 2023

a: \(\lim\limits_{x\rightarrow4}\dfrac{\sqrt{2x+8}-4}{x-4}\)

\(=\lim\limits_{x\rightarrow4}\dfrac{2x+8-16}{\sqrt{2x+8}+4}\cdot\dfrac{1}{x-4}\)

\(=\lim\limits_{x\rightarrow4}\dfrac{2\left(x-4\right)}{\sqrt{2x+8}+4}\cdot\dfrac{1}{x-4}\)

\(=\lim\limits_{x\rightarrow4}\dfrac{2}{\sqrt{2x+8}+4}=\dfrac{2}{\sqrt{2\cdot4+8}+4}\)

\(=\dfrac{2}{\sqrt{8+8}+4}=\dfrac{2}{4+4}=\dfrac{2}{8}=\dfrac{1}{4}\)

b: \(\lim\limits_{x\rightarrow2}\dfrac{x^2-4}{\sqrt{4x+1}-3}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left(x+2\right)}{\dfrac{4x+1-9}{\sqrt{4x+1}+3}}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left(x+2\right)}{4\left(x-2\right)}\cdot\left(\sqrt{4x+1}+3\right)\)

\(=\lim\limits_{x\rightarrow2}\dfrac{\left(x+2\right)\left(\sqrt{4x+1}+3\right)}{4}\)

\(=\dfrac{\left(2+2\right)\left(\sqrt{4\cdot2+1}+3\right)}{4}=\sqrt{9}+3=6\)

c: \(\lim\limits_{x\rightarrow2}\dfrac{x-2}{2-\sqrt{x+2}}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{x-2}{\dfrac{4-x-2}{2+\sqrt{x+2}}}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{x-2}{2-x}\cdot\left(\sqrt{x+2}+2\right)\)

\(=\lim\limits_{x\rightarrow2}\left(-\sqrt{x+2}-2\right)\)

\(=-\sqrt{2+2}-2=-2-2=-4\)

NV
8 tháng 1

\(=\lim\limits_{x\rightarrow0}\dfrac{2\left(\sqrt[]{2x+1}-1\right)+2-\sqrt[3]{x^2+x+8}}{x}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{2.2x}{\sqrt[]{2x+1}+1}-\dfrac{x\left(x+1\right)}{\sqrt[3]{\left(x^2+x+8\right)^2}+2\sqrt[3]{x^2+x+8}+4}}{x}\)

\(=\lim\limits_{x\rightarrow0}\left(\dfrac{4}{\sqrt[]{2x+1}+1}-\dfrac{x+1}{\sqrt[3]{\left(x^2+x+8\right)^2}+2\sqrt[3]{x^2+x+8}+4}\right)\)

\(=\dfrac{23}{12}\)

NV
28 tháng 2 2020

Do quá làm biếng dùng Hoocne tách nhân tử nên chúng ta sẽ sử dụng L'Hopital:

\(\lim\limits_{x\rightarrow1}\frac{4x^6-5x^5+x}{x^2-2x+1}=\lim\limits_{x\rightarrow1}\frac{24x^5-25x^4+1}{2x-2}=\lim\limits_{x\rightarrow1}\frac{120x^4-100x^3}{2}=\frac{120-100}{2}=10\)

\(\lim\limits_{x\rightarrow-3}\frac{x^4-6x^2-27}{x^3+3x^2+x+3}=\lim\limits_{x\rightarrow-3}\frac{4x^3-12x}{3x^2+6x+1}=\frac{-36}{5}\)

\(\lim\limits_{x\rightarrow-2}\frac{2x^3+x^2+12}{-x^2-6x-8}=\lim\limits_{x\rightarrow-2}\frac{6x^2+2x}{-2x-6}=-10\)

\(\lim\limits_{x\rightarrow-2}\frac{-2x^3+x-14}{-2x^3-x^2-12}=\lim\limits_{x\rightarrow-2}\frac{-6x^2+1}{-6x^2-2x}=\frac{23}{20}\)

Con cuối ko phải tích phân dạng vô định \(\frac{0}{0}\) bạn cứ thế thẳng -2 vào là được

Bài 1: Tính hợp lí1/ (-37) + 14 + 26 + 372/ (-24) + 6 + 10 + 243/ 15 + 23 + (-25) + (-23)4/ 60 + 33 + (-50) + (-33)5/ (-16) + (-209) + (-14) + 2096/ (-12) + (-13) + 36 + (-11)7/ -16 + 24 + 16 – 348/ 25 + 37 – 48 – 25 – 379/ 2575 + 37 – 2576 – 2910/ 34 + 35 + 36 + 37 – 14 – 15 – 16 – 17Bài 2: Bỏ ngoặc rồi tính1/ -7264 + (1543 + 7264)2/ (144 – 97) – 1443/ (-145) – (18 – 145)4/ 111 + (-11 + 27)5/ (27 + 514) – (486 – 73)6/ (36 + 79) + (145 – 79 –...
Đọc tiếp

Bài 1: Tính hợp lí
1/ (-37) + 14 + 26 + 37
2/ (-24) + 6 + 10 + 24
3/ 15 + 23 + (-25) + (-23)
4/ 60 + 33 + (-50) + (-33)
5/ (-16) + (-209) + (-14) + 209
6/ (-12) + (-13) + 36 + (-11)
7/ -16 + 24 + 16 – 34
8/ 25 + 37 – 48 – 25 – 37
9/ 2575 + 37 – 2576 – 29
10/ 34 + 35 + 36 + 37 – 14 – 15 – 16 – 17

Bài 2: Bỏ ngoặc rồi tính
1/ -7264 + (1543 + 7264)
2/ (144 – 97) – 144
3/ (-145) – (18 – 145)
4/ 111 + (-11 + 27)
5/ (27 + 514) – (486 – 73)
6/ (36 + 79) + (145 – 79 – 36)
7/ 10 – [12 – (- 9 - 1)]
8/ (38 – 29 + 43) – (43 + 38)
9/ 271 – [(-43) + 271 – (-17)]
10/ -144 – [29 – (+144) – (+144)]

Bài 3: Tính tổng các số nguyên x biết:
1/ -20 < x < 21
2/ -18 ≤ x ≤ 17
3/ -27 < x ≤ 27
4/ │x│≤ 3
5/ │-x│< 5

Bài 4: Tính tổng
1/ 1 + (-2) + 3 + (-4) + . . . + 19 + (-20)
2/ 1 – 2 + 3 – 4 + . . . + 99 – 100
3/ 2 – 4 + 6 – 8 + . . . + 48 – 50
4/ – 1 + 3 – 5 + 7 - . . . . + 97 – 99
5/ 1 + 2 – 3 – 4 + . . . . + 97 + 98 – 99 - 100

Bài 5: Tính giá trị của biểu thức
1/ x + 8 – x – 22 với x = 2010
2/ - x – a + 12 + a với x = - 98 ; a = 99
3/ a – m + 7 – 8 + m với a = 1 ; m = - 123
4/ m – 24 – x + 24 + x với x = 37 ; m = 72
5/ (-90) – (y + 10) + 100 với p = -24

Bài 6: Tìm x
1/ -16 + 23 + x = - 16
2/ 2x – 35 = 15
3/ 3x + 17 = 12
4/ │x - 1│= 0
5/ -13 .│x│ = -26

Bài 7: Tính hợp lí
1/ 35. 18 – 5. 7. 28
2/ 45 – 5. (12 + 9)
3/ 24. (16 – 5) – 16. (24 - 5)
4/ 29. (19 – 13) – 19. (29 – 13)
5/ 31. (-18) + 31. ( - 81) – 31
6/ (-12).47 + (-12). 52 + (-12)
7/ 13.(23 + 22) – 3.(17 + 28)
8/ -48 + 48. (-78) + 48.(-21)

Bài 8: Tính
1/ (-6 – 2). (-6 + 2)
2/ (7. 3 – 3) : (-6)
3/ (-5 + 9) . (-4)
4/ 72 : (-6. 2 + 4)
5/ -3. 7 – 4. (-5) + 1
6/ 18 – 10 : (+2) – 7
7/ 15 : (-5).(-3) – 8
8/ (6. 8 – 10 : 5) + 3. (-7)

Bài 9: So sánh
1/ (-99). 98 . (-97) với 0
2/ (-5)(-4)(-3)(-2)(-1) với 0
3/ (-245)(-47)(-199) với
123.(+315)
4/ 2987. (-1974). (+243). 0 với 0
5/ (-12).(-45) : (-27) với │-1│

Bài 13: Tìm x:
1/ (2x – 5) + 17 = 6

Bài 14: Tìm x
1/ x.(x + 7) = 0

2/ 10 – 2(4 – 3x) = -4
3/ - 12 + 3(-x + 7) = -18
4/ 24 : (3x – 2) = -3
5/ -45 : 5.(-3 – 2x) = 3

2/ (x + 12).(x-3) = 0
3/ (-x + 5).(3 – x ) = 0
4/ x.(2 + x).( 7 – x) = 0
5/ (x - 1).(x +2).(-x -3) = 0

Bài 15: Tìm
1/ Ư(10) và B(10)
2/ Ư(+15) và B(+15)
3/ Ư(-24) và B(-24)
4/ ƯC(12; 18)
5/ ƯC(-15; +20)

Bài 16: Tìm x biết
1/ 8 x và x > 0
2/ 12 x và x < 0
3/ -8 x và 12 x
4/ x 4 ; x (-6) và -20 < x < -10
5/ x (-9) ; x (+12) và 20 < x < 50

Bài 17: Viết dười dạng tích các tổng sau:
1/ ab + ac
2/ ab – ac + ad
3/ ax – bx – cx + dx
4/ a(b + c) – d(b + c)
5/ ac – ad + bc – bd
6/ ax + by + bx + ay

Bài 18: Chứng tỏ
1/ (a – b + c) – (a + c) = -b
2/ (a + b) – (b – a) + c = 2a + c
3/ - (a + b – c) + (a – b – c) = -2b
4/ a(b + c) – a(b + d) = a(c – d)
5/ a(b – c) + a(d + c) = a(b + d)

Bài 19: Tìm a biết
1/ a + b – c = 18 với b = 10 ; c = -9
2/ 2a – 3b + c = 0 với b = -2 ; c = 4
3/ 3a – b – 2c = 2 với b = 6 ; c = -1
4/ 12 – a + b + 5c = -1 với b = -7 ; c = 5
5/ 1 – 2b + c – 3a = -9 với b = -3 ; c = -7

Bài 20: Sắp xếp theo thứ tự
* tăng dần
1/ 7; -12 ; +4 ; 0 ; │-8│; -10; -1
2/ -12; │+4│; -5 ; -3 ; +3 ; 0 ; │-5│
* giảm dần
3/ +9 ; -4 ; │-6│; 0 ; -│-5│; -(-12)
4/ -(-3) ; -(+2) ; │-1│; 0 ; +(-5) ; 4 ; │+7│; -8

26
5 tháng 6 2021

mình giải từng bài nhá

hả đơn giản

20 tháng 2 2021

a/ \(=\lim\limits_{x\rightarrow+\infty}\dfrac{x^2-x+1-x^2-x-1}{\sqrt{x^2-x+1}+\sqrt{x^2+x+1}}=\lim\limits_{x\rightarrow+\infty}\dfrac{-\dfrac{2x}{x}}{\sqrt{\dfrac{x^2}{x^2}-\dfrac{x}{x^2}+\dfrac{1}{x^2}}+\sqrt{\dfrac{x^2}{x^2}+\dfrac{x}{x^2}+\dfrac{1}{x^2}}}=-\dfrac{2}{1+1}=-1\)

b/ \(=\lim\limits_{x\rightarrow2}\dfrac{4x+1-9}{\left(x-2\right)\left(x+2\right)\left(\sqrt{4x+1}+3\right)}=\lim\limits_{x\rightarrow2}\dfrac{4\left(x-2\right)}{\left(x-2\right)\left(x+2\right)\left(\sqrt{4x+1}+3\right)}=\lim\limits_{x\rightarrow2}\dfrac{4}{\left(x+2\right)\left(\sqrt{4x+1}+3\right)}=\dfrac{4}{\left(2+2\right)\left(\sqrt{4.2+1}+3\right)}=\dfrac{1}{6}\)

c/ \(=\lim\limits_{x\rightarrow-2}\dfrac{2x+5-1}{\left(x-2\right)\left(x+2\right)\left(\sqrt{2x+5}+1\right)}=\lim\limits_{x\rightarrow-2}\dfrac{2}{\left(x-2\right)\left(\sqrt{2x+5}+1\right)}=\dfrac{2}{\left(-2-2\right)\left(\sqrt[2]{2.\left(-2\right)+5}+1\right)}=\dfrac{2}{\left(-4\right).2}=-\dfrac{1}{4}\)

9 tháng 2 2022

a. \(lim_{x\rightarrow3}\dfrac{x^3-27}{3x^2-5x-2}=\dfrac{3^3-27}{3.3^2-5.3-2}=\dfrac{0}{10}=0\)

b. \(lim_{x\rightarrow2}\dfrac{\sqrt{x+2}-2}{4x^2-3x-2}=\dfrac{\sqrt{2+2}-2}{4.2^2-3.2-2}=\dfrac{0}{8}=0\)

c. \(lim_{x\rightarrow1}\dfrac{1-x^2}{x^2-5x+4}=lim_{x\rightarrow1}\dfrac{\left(1-x\right)\left(x+1\right)}{\left(x-1\right)\left(x-4\right)}=lim_{x\rightarrow1}\dfrac{-\left(x+1\right)}{x-4}=\dfrac{-\left(1+1\right)}{1-4}=\dfrac{2}{3}\)

d. Câu này mình chịu, nhìn đề hơi lạ so với bình thường hehe

AH
Akai Haruma
Giáo viên
14 tháng 5 2021

Lời giải:
a) 

\(\lim\limits_{x\to +\infty}\frac{\sqrt[3]{x^3+2x^2-4x+1}}{\sqrt{2x^2+x-8}}=\lim\limits_{x\to +\infty}\frac{\sqrt[3]{1+\frac{2}{x}-\frac{4}{x^2}+\frac{1}{x^3}}}{\sqrt{2+\frac{1}{x}-\frac{8}{x^2}}}\)

\(=\frac{1}{\sqrt{2}}\)

b) 

\(\lim\limits_{x\to -\infty}\frac{\sqrt{x^2-2x+4}-x}{3x-1}=\lim\limits_{x\to -\infty}\frac{\sqrt{1-\frac{2}{x}+\frac{4}{x^2}}+1}{-3+\frac{1}{x}}=\frac{-1}{3}\)