K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

99+99x1-2 

=99+99-2

=198-2

=196

7 tháng 1 2016

= 99 + 99 - 2

=      198  - 2

=           196

10 tháng 10 2016

Ở Tử số là phép cộng tổng mà: 

1 xuất hiện 99 lần
2 xuất hiện 98 lần
3 xuất hiện 97 lần
... 
99 xuất hiện 1 lần


Do đó tử số bằng: 1 x 99 + 2 x 98 + 3 x 97 +...99 x 1

Vậy phân số trên có tử số bằng mẫu số nên bằng 1

10 tháng 10 2016

= 1 Vì tử số và mẫu số đều bằng nhau !

11 tháng 8 2020

Đặt \(A=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right):\left(\frac{1}{1.99}+\frac{1}{3.97}+....+\frac{1}{97.3}+\frac{1}{99.1}\right)\)

Đặt \(B=\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{97.3}+\frac{1}{99.1}\)

=> 100 x B = \(\frac{100}{1.99}+\frac{100}{3.97}+...+\frac{100}{97.3}+\frac{100}{99.1}=1+\frac{1}{99}+\frac{1}{3}+\frac{1}{97}+...+\frac{1}{97}+\frac{1}{3}+\frac{1}{99}+1\)

=> 100 x B = \(2.\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}\right)\)

=> \(B=\frac{1}{50}.\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}\right)\)

Khi đó A = \(\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}}{\frac{1}{50}\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}\right)}=\frac{1}{\frac{1}{50}}=50\)

28 tháng 10 2017

ko biet

17 tháng 1 2023

ko bt lm sao?!

Có tin t bảo cô m hỏi bài trên mạng không?

Mấy bài t hỏi là t đố con chính chủ xg con chính chủ nó đăng thôi

17 tháng 1 2023

t nhớ ko nhầm thì m cũng đăng bài này mà??

5 tháng 6 2017

Người phán sử

Gọi biểu thức đó là A ta có :

\(A=1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+...+\frac{1}{99}\)

\(A=2-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\)

\(A=2-\frac{1}{99}\)

\(A=\frac{197}{99}\)

5 tháng 6 2017

thế còn phần ở dưới đâu?đó là một bài đấy. hiểu chưa?????????????/

17 tháng 5 2017

\(x\) là dấu nhân ak bn?? lolang

18 tháng 5 2017

Trên kia có ngừ giải r ý bạn!!

4 tháng 8 2017

tính nhanh nha

4 tháng 8 2017

Mình chỉ tính câu b và c thội nhé!.

Ta có:

b) \(1.2+2.3+3.4+...+99.100\)

\(=\frac{99.100.101}{3}=333300\)

c) \(\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+99\right)}{1.99+2.98+3.97+...+99.1}\)

\(=\frac{1+1+2+1+2+3+1+2+3+4+...+1+2+3+...+99}{1.99+2.98+3.97+...+99.1}\)

\(=\frac{\left(1+1+...+1\right)+\left(2+2+...+2\right)+\left(3+3+...+3\right)+....+99}{1.99+2.98+3.97+...+99.1}\)

\(=\frac{1.99+2.98+3.97+...+99.1}{1.99+2.98+3.97+...+99.1}=1\)