Gọi x 1 , x 2 là hai điểm cực trị của y = x 3 - 3 m x 2 + 3 ( m 2 - 1 ) x m 3 + m . Tìm m để x 1 2 + x 2 2 - x 1 x 2 = 7
A. m = 0
B. m = ± 9 2
C. m = ± 1 2
D. m = ± 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TXĐ: D = R
\(y'=3x^2-6x=0\) \(\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=1\\x=2\Rightarrow y=-3\end{matrix}\right.\)
Suy ra 2 điểm cực trị của đồ thị là: A(0; 1) và B(2; -3)
Ptđt đi qua 2 điểm cực trị:
\(\dfrac{x}{2}=\dfrac{y-1}{-4}\) \(\Rightarrow-2x=y-1\) \(\Leftrightarrow y=-2x+1\left(d'\right)\)
Vì \(d\perp d'\) \(\Rightarrow\left(2m-1\right)\cdot\left(-2\right)=-1\) \(\Leftrightarrow m=\dfrac{3}{4}\)
Chọn B
Bài 1:
ĐTHS \(y=x^3+3mx+1\) có hai điểm cực trị khi \(y'=3x^2+3m=0\Leftrightarrow x^2+m=0\) có hai nghiệm phân biệt \(\Leftrightarrow m<0\)
Hoành độ của hai điểm cực trị chính là hai nghiệm của PT \(x^2+m=0\)
Khi đó ta có \(y=x^3+3mx+1=x(x^2+m)+2mx+1=2mx+1\)
Do đó \(d: y=2xm+1\) là đường thẳng đi qua hai điểm cực trị
\(\Rightarrow d(M,d)=\frac{|1-3|}{\sqrt{(2m)^2+1}}=\frac{2}{\sqrt{5}}\Leftrightarrow m^2=1\rightarrow m=-1\) (do \(m<0\))
Vậy $m=-1$
Bài 2:
ĐTHS trên có hai điểm cực trị khi \(y'=6x^2+6(m-1)x+6(m-2)=0\)
\(\Leftrightarrow 6[x+(m-2)](x+1)=0\) có hai nghiệm phân biệt.
Khi đó, chỉ cần \(m\neq 3\)
Từ pt trên ta thu được hai nghiệm \(x=2-m;x=-1\)
Điểm CĐ và CT nằm trong khoảng \((-2,3)\) suy ra
\(\left\{\begin{matrix} -1\in (-2;3)\\ 2-m\in (-2;3)\end{matrix}\right.\Leftrightarrow 4>m>-1\)
Vậy \(4>m>-1\) và \(m\neq 3\)
Bài 3:
Ta có \(y'=x^2-2(m+1)x+2m+1=0\)
\(\Leftrightarrow [x-(2m+1)](x-1)=0\)
ĐTHS có cực trị khi PT trên có hai nghiệm phân biệt, tức là \(m\neq 0\)
Khi đó, hai nghiệm thu được là \(1\) và \(2m+1\) .
Hiển nhiên các điểm cực trị của ĐTHS là \((1;m-1);\left(2m+1,\frac{-4m^3}{3}+m-1\right)\)
Điểm cực trị của ĐTHS thuộc trục hoành thì tung độ bằng $0$
Nếu \((1;m-1)\) là điểm cực đại thì \(\left\{\begin{matrix} m-1=0\\ m-1>\frac{-4m^3}{3}+m-1\end{matrix}\right.\Rightarrow m=1\)
Nếu \(\left (2m+1,\frac{-4m^3}{3}+m-1\right)\) là điểm cực đại thì
\(\left\{\begin{matrix} \frac{-4}{3}m^3+m-1=0\\ m-1<\frac{-4m^3}{3}+m-1\end{matrix}\right.\Rightarrow m<0\) (không thỏa mãn)
Vậy $m=1$
Ta có: y ' = 3 x 2 - 6 m x + 3 m 2 - 3
Để đồ thị hàm số đã cho có 2 điểm cực trị khi và chỉ khi phương trình y’ = 0 có 2 nghiệm phân biệt và y’ đổi dấu qua các nghiệm đó.
y' = 3x^2 - 6mx + 3m^2 - 3
⇔ Δ ' = 9 m 2 - 9 m 2 + 9 = 9 > 0
Do đó, hàm số đã cho có 2 điểm cực trị x 1 , x 2 là nghiệm phương trình y’ = 0.
Áp dụng hệ thức Vi-et ta có:
Chọn D.