K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2019

Ta có:  y ' = 3 x 2 - 6 m x + 3 m 2 - 3

Để đồ thị hàm số đã cho có 2 điểm cực trị khi và chỉ khi phương trình y’ = 0 có 2 nghiệm phân biệt và y’ đổi dấu qua các nghiệm đó.

y' = 3x^2 - 6mx + 3m^2 - 3

⇔ Δ ' = 9 m 2 - 9 m 2 + 9 = 9 > 0

Do đó, hàm số đã cho có 2 điểm cực trị x 1 ,   x 2  là nghiệm phương trình y’ = 0.

Áp dụng hệ thức Vi-et ta có:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Chọn D.

21 tháng 3 2023

TXĐ: D = R

\(y'=3x^2-6x=0\) \(\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=1\\x=2\Rightarrow y=-3\end{matrix}\right.\)

Suy ra 2 điểm cực trị của đồ thị là: A(0; 1) và B(2; -3)

Ptđt đi qua 2 điểm cực trị:

\(\dfrac{x}{2}=\dfrac{y-1}{-4}\) \(\Rightarrow-2x=y-1\) \(\Leftrightarrow y=-2x+1\left(d'\right)\)

Vì \(d\perp d'\) \(\Rightarrow\left(2m-1\right)\cdot\left(-2\right)=-1\) \(\Leftrightarrow m=\dfrac{3}{4}\)

Chọn B

AH
Akai Haruma
Giáo viên
20 tháng 7 2017

Bài 1:

ĐTHS \(y=x^3+3mx+1\) có hai điểm cực trị khi \(y'=3x^2+3m=0\Leftrightarrow x^2+m=0\) có hai nghiệm phân biệt \(\Leftrightarrow m<0\)

Hoành độ của hai điểm cực trị chính là hai nghiệm của PT \(x^2+m=0\)

Khi đó ta có \(y=x^3+3mx+1=x(x^2+m)+2mx+1=2mx+1\)

Do đó \(d: y=2xm+1\) là đường thẳng đi qua hai điểm cực trị

\(\Rightarrow d(M,d)=\frac{|1-3|}{\sqrt{(2m)^2+1}}=\frac{2}{\sqrt{5}}\Leftrightarrow m^2=1\rightarrow m=-1\) (do \(m<0\))

Vậy $m=-1$

Bài 2:

ĐTHS trên có hai điểm cực trị khi \(y'=6x^2+6(m-1)x+6(m-2)=0\)

\(\Leftrightarrow 6[x+(m-2)](x+1)=0\) có hai nghiệm phân biệt.

Khi đó, chỉ cần \(m\neq 3\)

Từ pt trên ta thu được hai nghiệm \(x=2-m;x=-1\)

Điểm CĐ và CT nằm trong khoảng \((-2,3)\) suy ra

\(\left\{\begin{matrix} -1\in (-2;3)\\ 2-m\in (-2;3)\end{matrix}\right.\Leftrightarrow 4>m>-1\)

Vậy \(4>m>-1\)\(m\neq 3\)

AH
Akai Haruma
Giáo viên
20 tháng 7 2017

Bài 3:

Ta có \(y'=x^2-2(m+1)x+2m+1=0\)

\(\Leftrightarrow [x-(2m+1)](x-1)=0\)

ĐTHS có cực trị khi PT trên có hai nghiệm phân biệt, tức là \(m\neq 0\)

Khi đó, hai nghiệm thu được là \(1\)\(2m+1\) .

Hiển nhiên các điểm cực trị của ĐTHS là \((1;m-1);\left(2m+1,\frac{-4m^3}{3}+m-1\right)\)

Điểm cực trị của ĐTHS thuộc trục hoành thì tung độ bằng $0$

Nếu \((1;m-1)\) là điểm cực đại thì \(\left\{\begin{matrix} m-1=0\\ m-1>\frac{-4m^3}{3}+m-1\end{matrix}\right.\Rightarrow m=1\)

Nếu \(\left (2m+1,\frac{-4m^3}{3}+m-1\right)\) là điểm cực đại thì

\(\left\{\begin{matrix} \frac{-4}{3}m^3+m-1=0\\ m-1<\frac{-4m^3}{3}+m-1\end{matrix}\right.\Rightarrow m<0\) (không thỏa mãn)

Vậy $m=1$

17 tháng 9 2019

Đáp án D