OLM ưu đãi đặc biệt gói SVIP 18 THÁNG dành cho nhà trường, đăng kí ngay!
Tham gia chương tình "Học kỳ rực rỡ" cùng OLM cơ hội nhận quà lên tới 2.000.000Đ
Cơ hội nhận 15 ngày VIP dành cho thầy cô nhân dịp đầu năm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số phức z=a+bi(a,b thuộc R) có điểm biểu diễn như hình vẽ bên. Tìm a,b.
A. .
B. .
C. .
D. .
Số phức z = a + b i ( a , b ∈ R ) có điểm biểu diễn như hình vẽ bên. Tìm a, b.
A.a = -4, b = 3
B. a = 3, b = -4
C. a = 3, b = 4
D. a = -4, b = -3
Cho số phức z = a + b i ; a , b ∈ R Tìm điều
kiện của a và b để điểm biểu diễn z thuộc hình tròn
tâm O bán kính R = 3 như hình vẽ bên
Đáp án C.
Cho số phức z=a+bi, a,b ÎR. Tìm điều kiện của a và b để điểm biểu diễn z thuộc hình tròn tâm O bán kính R = 3 như hình vẽ bên
A. a 2 + b 2 > 9
B. - 3 ≤ a ≤ 3 - 3 ≤ b ≤ 3
C. a 2 + b 2 ≤ 9
D. a < - 3 b > 3
Chọn C
Cho số phức z = a + b i a , b ∈ R Điểm biểu diễn z thuộc dải giới hạn bởi hai đường thẳng y = -5 và y = 5 như hình vẽ bên. Tìm điều kiện của a và b.
Cho số phức z = a + b i , a , b ∈ R . Tìm điều kiện của a và b để điểm biểu diễn của z thuộc dải giới hạn bởi đường thẳng x = - 2 và x = 2 như hình vẽ bên
A. a ≥ 2 b ≥ 2
B. a ≤ 2 b ≤ - 2
C. a ≤ 2 b ≥ - 2
D. - 2 ≤ a ≤ 2 b ∈ R
Chọn D
Cho số phức z = a + b i a , b ∈ R Tìm điều kiện của a và b để điểm biểu diễn của z thuộc dải giới hạn bởi đường thẳng x=2 và x = - 2 như hình vẽ bên
Đáp án D.
Cho số phức z = a + b i , a , b ∈ R . Điểm biểu diễn của z trên mặt phẳng tọa độ thuộc hình tròn tâm O bán kính R = 2 như hình vẽ bên thì điều kiện của a và b là
A. - 2 ≤ a ≤ 2 - 2 ≤ b ≤ 2
B. a 2 + b 2 ≤ 4
C. a 2 + b 2 > 4
D. a < - 2 ; b > 2
Chọn B
Cho số phức z = a + b i ( a , b ∈ R ) Điểm biểu diễn của z trên mặt phẳng tọa độ thuộc hình tròn tâm O bán kính R = 2 như hình vẽ bên thì điều kiện của a và b là
Đáp án B.
Cho số phức z=a+bi, a,bÎR. Điểm biểu diễn z thuộc dải giới hạn bởi hai đường thẳng y = -5 và y = 5 như hình vẽ bên. Tìm điều kiện của a và b.
A. - 5 ≤ a ≤ 5 - 5 ≤ b ≤ 5
B. - 5 ≤ a ≤ 5 b ∈ R
C. a ∈ R - 5 ≤ b ≤ 5
D. a ≤ 5 b ≥ - 5