Chứng minh rằng: số nghiệm của đa thức nhỏ hơn hoặc bằng số bậc của nó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Một đa thức ( khác đa thức 0) có thể có một nghiệm, hai
nghiệm, hoặc không có nghiệm.
- Người ta đã chứng minh được rằng số nghiệm của một
đa thức (khác đa thức 0) không vượt quá bậc của nó.
Chẳng hạn: Đa thức bậc nhất chỉ có một nghiệm, đa thức
bậc hai có không quá hai nghiệm,
Giả sử n = a. b (1 < a, b < n )
Nếu cả a và b đều lớn hơn căn bậc 2 của n thì n = ab > n (vô lý) như vậy phải có một thừa số không vượt quá căn bậc 2 của n hay có ước nguyên tố không vượt quá căn bậc 2 của n
Vì mk ko biết viết dấu căn bậc nên mk thay bằng chữ, mong bạn thông cảm nha !
BÀI 1:
Tìm số tự nhiên n sao cho \(19+3^n\)là số chính phương
BÀI 2:
cho a,b,c là các số thực thỏa mãn: \(1\le a\), \(b,c\le3\)và \(a+b+c=6\)
Tìm GTLN: \(M=a^2+b^2+c^2\)
(Lớp 8 mà học đa thức bất khả quy rồi sao???)
Em tìm hiểu sơ về 2 khái niệm sau đây trên mạng: "đa thức bất khả quy" và "tiêu chuẩn Eisenstein".
1. Đa thức hệ số nguyên gọi là bất khả quy nếu không phân tích được thành 2 nhân tử bậc nhỏ hơn với hệ số nguyên (bậc của chúng >=1).
2. Tiêu chuẩn Eisenstein: Nếu tồn tại \(p\) nguyên tố thoả mãn:
- Hệ số cao nhất không chia hết cho \(p\).
- Mọi hệ số khác đều chia hết cho \(p\).
- Riêng hệ số tự do không chia hết cho \(p^2\).
Thì đa thức này bất khả quy.
-----
Nếu em đã hiểu được 2 khái niệm trên thì lời giải như sau:
Xét số nguyên tố \(3\). Nhận thấy theo tiêu chuẩn Eisenstein thì đa thức \(Q\left(x\right)\) bất khả quy. Xong!
Chọn B.
Vì trong một khối đa diện mỗi đỉnh có ít nhất 3 cạnh đi qua và mỗi cạnh nối hai đỉnh nên ta có 2c ≥ 3đ. Suy ra c > đ.