Cho khối chóp S.ABCD có đáy là hình bình hành. Mặt phẳng (SAC) chia khối chóp S.ABCD thành mấy khối tứ diện.
A. 4
B. 3
C. 2
D. 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A.
Mặt phẳng (SAC) chia khối chóp S.ABCD thành 2 khối tứ diện là S.ABC và S.ACD.
Chọn A.
Gọi O là giao điểm của AC và BD.
Mặt phẳng (SAC) và( SBD) chia khối chóp S.ABCD thành mấy khối chóp thành 4 khối chóp là các khối chóp sau S.ABO, S.ADO, S.CDO, S.BCO
Gọi O là giao điểm của AC và BD.
Mặt phẳng (SAC) và (SBD) chia khối chóp S.ABCD thành mấy khối chóp thành 4 khối chóp là các khối chóp sau S.ABO, S.ADO, S.CDO, S.BCO.
Đáp án cần chọn là A
Chọn đáp án A
Gọi O là tâm hình vuông ABCD, H là trung điểm của AB
Mặt phẳng (ACM) chia khối chóp S.ABCD thành hai khối đa diện M.ACD có thể tích V1 và khối đa diện còn lại có thể tích V2
Đáp án C
Ta có: 2 O D 2 = a 2 ⇒ O D = a 2
⇒ S O = O D tan 60 ∘ = a 2 . 3 = a 3 2
Gọi H là hình chiếu của N lên (ABCD) là trung điểm của OC.
Ta có: N H = S O 2 = a 6 4 ; S M B C = S A B C D = a 2
V N . B C M = 1 3 N H . S M B C = 1 3 . a 6 4 . a 2 = a 3 6 12
Ta có:
M D D C . C S C N . N P P M = 1 ⇔ 1.2. N P P M = 1 ⇔ N P P M = 1 2 ⇒ P M M N = 2 3
Ta có: V M . D P Q V M . B C N = P M M N . M D M C . M Q M B = 2 3 . 1 2 . 1 2 = 1 6
⇒ V N p Q D C A = 5 6 V N . B C M = 5 6 . a 3 6 12 = 5 a 3 6 72
Có 5 mặt phẳng cách đều 5 điểm S, A, B, C, D:
Mặt phẳng đi qua 4 trung điểm của 4 cạnh bên: có 1 mặt.
Mặt phẳng đi qua tâm O và song song với từng mặt bên : có 4 mặt như vậy
Chọn C
Mặt phẳng (SAC) chia khối chóp S.ABCD thành 2 khối tứ diện là : SABC,SACD