Cho số phức z thỏa mãn (3-4i)z - 4 z = 8. Trên mặt phẳng tọa độ, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức z thuộc tập nào?
A . ( 9 4 ; + ∞ )
B . ( 1 4 ; 5 4 )
C . ( 0 ; 1 4 )
D . ( 1 2 ; 9 4 )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Ta có
Lấy môđun hai vế của (*) và sử dụng công thức ta được
Gọi M(x;y) là điểm biểu diễn số phức z. Khi đó
Đáp án D
Ta có 3 - 4 i z - 4 z = 8 ⇔ 3 - 4 i z = 8 + 4 z ( * )
Lấy môđun hai vế của (*) và sử dụng công thức z 1 z 2 = z 1 . z 2 , ta được
* ⇔ 3 - 4 i z = 8 + 4 z ⇔ 3 - 4 i . z = 4 2 + 1 z ⇔ 5 z = 4 2 + 1 z
⇔ 5 z 2 = 4 2 z + 1 ⇔ 5 z 2 - 8 z - 4 = 0 ⇔ z = 2
Gọi M(x;y) là điểm biểu diễn số phức z. Khi đó O M = x 2 + y 2 = z = 2 ∈ 1 2 ; 9 4 .
Đáp án C
Đặt Số phức w được biểu diễn bởi điểm M (x;y).
Ta có:
=> |z| =
Vậy số phức w được biểu diễn bởi đường tròn tâm I (0;1), bán kính R = 20 và có phương trình:
Đáp án D
Ta có (3-4i)z - 4 z = 8
Lấy môđun hai vế của (*) và sử dụng công thức ta được
Gọi M(x;y) là điểm biểu diễn số phức z. Khi đó OM =