Tìm x,y \(\in\) Z biết:
a. x+xy+y =9
b. xy - 2x - 3y=5.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x + xy + y = 9
x(y + 1) + y = 9
x(y + 1) + y + 1 = 9 + 1
x(y + 1) + (y + 1) = 9 + 1
(x + 1)(y + 1) = 10 = 2.5 = 1.10 = (-2)(-5) = (-1)(-10)
Liệt kê ra
a,x+xy+y=9
<=>x+xy+y+1=10
<=>x﴾y+1﴿+﴾y+1﴿=10
<=>﴾x+1﴿﴾y+1﴿=10 =1.10=-1.(-10)=2.5=(-2).(-5)
=> +,
+,
+,
....
Từ đó ta tìm được các cặp ﴾x;y﴿thoã mãn:
﴾1;4﴿ ; ﴾0;9﴿ ; ﴾‐3;‐6﴿ ; ﴾‐2;‐11﴿ ; ﴾4;1﴿ ; ﴾9;0﴿ ; ﴾‐6;‐3﴿ ; ﴾‐11;‐2﴿
a, nếu x<3/2suy ra x-2<0 suy ra |x-2|=-(x-2)=2-x
(3-2x)>0 suy ra|3-2x|=3-2x
ta có: 2-x+3-2x=2x+1
5-3x=2x+1
5-1=2x+3x
6=6x nsuy ra x=6(loại vì ko thuộc khả năng xét)
nếu \(\frac{3}{2}\le x<2\)thì x-2<0 suy ra|x-2|=-(x-2)=2-x
2-2x<0 suy ra|3-2x|=-(3-2x)=2x-3
ta có:2-x+2x-3=2x+1
-1+x=2x+1
-1-1=2x-x
-2=x(loại vì ko thuộc khả năng xét)
nếu \(x\ge2\)thì x-2\(\ge\)0suy ra:|x-2|=x-2
3-2x<0 suy ra:|3-2x|=-(3-2x)=2x-3
ta có:x-2+2x-3=2x+1
3x-5=2x+1
3x-2x=5+1
x=6(chọn vì thuộc khả năng xét)
suy ra x=6
c)\(tacó:2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{15}=\frac{y}{10}\)
\(4y=5z\Rightarrow\frac{y}{5}=\frac{z}{4}\Rightarrow\frac{y}{10}=\frac{z}{8}\)
suy ra:\(\frac{x}{15}=\frac{y}{10}=\frac{z}{8}=k\Rightarrow x=15k;y=10k;z=8k\)
ta có: 4(15k)-3(10k)+5(8k)=7
60k-30k+40k=7
70k=7 suy ra k=1/10
ta có:x=1/10.15=3/2
y=1/10.10=1
câu thứ 2 là x+xy+y=9 chứ ko phải bằng 3 nhé . Các bạn giải giùm mình nha. Thank my friends
b) x + xy + y = 3
=> x(y + 1) + y = 3
=> x(y + 1) + (y + 1) = 4
=> (x + 1)(y + 1) = 4 = 1 . 4 = 4 . 1 = 2 . 2
Lập bảng :
x + 1 | 1 | 4 | -1 | -4 | 2 | -2 |
y + 1 | 4 | 1 | -4 | -1 | -2 | 2 |
x | 0 | 3 | -2 | -5 | 1 | -3 |
y | 3 | 0 | -5 | -2 | -3 | 1 |
Vậy ...
\(\Rightarrow2x-xy-6+3y=5-6\)\(\Rightarrow x\left(2-y\right)-\left(6-3y\right)=-1\)
\(\Rightarrow\left(2-y\right)x-3\left(2-y\right)=-1\)\(\Rightarrow\left(2-y\right)\left(x-3\right)=-1=1.\left(-1\right)\)
Với 2-y=1 thì x-3=-1 suy ra x=-2 và y=1
Với 2-y=-1 thì x-3=1 suy ra x=4 và y=3
Vậy \(\left(x;y\right)\in\left\{\left(-2;1\right);\left(4;3\right)\right\}\)
a) Ta có: x^2 + y^2 + xy = 7 <=> (x+y)^2 -2xy+xy=7 <=> (x+y)^2 - xy =7 (1)
x+y+xy=5 (2)
Đặt S=x+y, P=xy, điều kiện: S^2>=4P, ta có hệ mới:
(1) => S^2 -P=7(3)
(2) => S+p=5 <=> P=5-S (4)
giải ra S,P rồi đối chiếu điều kiện suy ra x,y.
xy + 2x - 3y = 14
x . ( y + 2 ) - 3y = 14
x . ( y + 2 ) - 3y - 6 = 8
x . ( y + 2 ) - 3 . ( y + 2 ) = 8
( x - 3 ) . ( y + 2 ) = 8
Lập bảng ta có :
x-3 | 1 | 8 | -1 | -8 | 2 | 4 | -4 | -2 |
y+2 | 8 | 1 | -8 | -1 | 4 | 2 | -2 | -4 |
x | 4 | 11 | 2 | -5 | 5 | 7 | -1 | 1 |
y | 6 | -1 | -10 | -3 | 2 | 0 | -4 | -6 |
Vậy ( x ; y ) = { ( 4 ; 6 ) ; ( 11 ; -1 ) ; ( 2 ; -10 ) ; ( -5 ; 3 ) ; ( 5 ; 2 ) ; ( 7 ; 0 ) ; ( -1 ; -4 ) ; ( 1 ; -6 ) }
a) x + xy + y = 9
=> x(1 + y) + y = 9
=> x(1 + y) + (1 + y) = 10
=> (x + 1)(1 + y) = 10 = 1 . 10 = 2.5
Lập bảng :
x + 1 | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
1 + y | 10 | -10 | 5 | -5 | 2 | -2 | 1 | -1 |
x | 0 | -2 | 1 | -3 | 4 | -6 | 9 | -11 |
y | -9 | -11 | 4 | -6 | 1 | -3 | 0 | -2 |
Vậy ...
còn lại tương tự