Cho tam giác ABC vuông tại A có đường cao AH và AB=12cm, AC=16cm. Chọn khẳng định đúng trong các khẳng định sau:
A. BC = 20cm
B. BH = 4,6cm
C. tan B = 25 12
D. c o t C = 25 12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Gọi I, J lần lượt là trung điểm của BH và CH.
Để chứng minh DE là tiếp tuyến của đường tròn tâm I đường kính BH ta chứng minh ID ⊥ DE hay
Vì D, E lần lượt thuộc đường tròn đường kính BH và HC
Nên DE là tiếp tuyến của đường tròn đường kính BH
Từ chứng minh trên suy ra các phương án B, C, D đúng
Chọn đáp án A
Gọi I, J lần lượt là trung điểm của BH và CH.
Để chứng minh DE là tiếp tuyến của đường tròn tâm I đường kính BH ta chứng minh ID ⊥ DE hay
Vì D, E lần lượt thuộc đường tròn đường kính BH và HC
Nên DE là tiếp tuyến của đường tròn đường kính BH
Từ chứng minh trên suy ra các phương án B, C, D đúng
A là khẳng định sai.
Vì \(SB\perp\left(ABC\right)\) nên \(SB\perp BC\)
Nếu \(SA\perp BC\Rightarrow SA||SB\) hoặc SA trùng SB (đều vô lý)
Đáp án D
Ta có : BC = BH + HC = 9 + 16 = 25 (cm)
Áp dụng hệ thức về cạnh và đường cao trong tam giác –vuông ta có:
Hướng dẫn:
∆ ABC ∼ ∆ HBA nên
Suy ra HB = 4/5HA = 48/5 = 9,6. Chọn B.
Đáp án C
Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông ta có:
Đáp án D
Ta có: B C ⊥ A A ' B C ⊥ A H
Do đó:
Mặt khác, tam giác A’BC vuông cân tại A’
nên A ' H = 1 2 B C = 3 a 2
Ta có:
⇒ φ = 60 o
a)AB=6cm,BC=10cm
∆ABC vuông tại A đg cao AH có
#\(AC^2=BC^2-AB^2\)
AC2=100-36=64
AC=8cm
# \(AB^2=BH.BC\)
36=BH.10
BH=3,6cm
# CH=BC-BH=10-3,6=6,4cm
# \(AH^2=BH.CH\)
AH2=3,6.6,4=23,04
AH=4,8cm
b)
∆ABC vuông tại A đg cao AH có
#\(AB^2=BC^2-AC^2\)
AB2=625-400=225
AB=15cm
# \(AB^2=BH.BC\)
225=BH.25
BH=9cm
# CH= BC-BH=25-9=16cm
# \(AH.BC=AB.AC\)
AH.25=15.20=300
AH=12cm
( cot C = tan B = 4 3 vì góc B và góc C là hai góc phụ nhau)
Áp dụng hệ thức về cạnh và hình chiếu trong tam giác vuông ta có:
A B 2 = B H . B C ⇒ B H = A B 2 B C = 12 2 20 = 7,2 ( c m )