Cho hai đường thẳng d 1 : y = x – 1 v à d 2 : y = 2 – 3 x . Tung độ giao điểm của d 1 ; d 2 2 có tọa độ là:
A. y = − 4
B. y = 7 4
C. y = 1 4
D. y = - 1 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi tất cả các pt đường thẳng có dạng \(y=ax+b\)
a/ Do đường thẳng cắt trục tung tại điểm có tung độ bằng 2 và đi qua B(2;-1) nên ta có:
\(\left\{{}\begin{matrix}2=0.a+b\\-1=2a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=2\\a=-\frac{3}{2}\end{matrix}\right.\) \(\Rightarrow y=-\frac{3}{2}x+2\)
b/ Do .... nên ta có:
\(\left\{{}\begin{matrix}3=0.a+b\\a=\frac{1}{3}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{1}{3}\\b=3\end{matrix}\right.\) \(\Rightarrow y=\frac{1}{3}x+3\)
c/ Pt hoành độ giao điểm của 2 đường thẳng:
\(5x-3=-2x+4\Rightarrow7x=7\Rightarrow x=1\Rightarrow y=2\Rightarrow\left(1;2\right)\)
Do... nên: \(\left\{{}\begin{matrix}2=1.a+b\\a=-\frac{3}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{3}{2}\\b=\frac{7}{2}\end{matrix}\right.\) \(\Rightarrow y=-\frac{3}{2}x+\frac{7}{2}\)
d/ Do... nên:
\(\left\{{}\begin{matrix}-5=-2a+b\\4=1.a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=3\\b=1\end{matrix}\right.\) \(\Rightarrow y=3x+1\)
Lời giải:
PT hoành độ giao điểm giữa $(d)$ và $(d')$:
$(m-3)x+16-x-m^2=0$
$\Leftrightarrow (m-4)x+(16-m^2)=0(*)$
$d$ và $d'$ cắt nhau tại 1 điểm trên trục tung, tức là hoành độ của giao điểm đó là $x=0$
Điều này đồng nghĩa với $x=0$ là nghiệm của $(*)$
$\Rightarrow (m-4).0+16-m^2=0$
$\Leftrightarrow 16=m^2\Rightarrow m=\pm 4$
Nếu $m=4$ thì $(d)\equiv (d')$ nên loại. Vậy $m=-4$
Lời giải:
Gọi các pt tổng quát có dạng \(y=ax+b\)
a)
(d) song song với \(y=\frac{1}{2}x\Rightarrow a=\frac{1}{2}\)
(d) cắt trục tung tại tung độ -3 nghĩa là (d) giao với trục tung tại \((0;-3)\)
\(\Rightarrow -3=0.a+b\Leftrightarrow b=-3\)
Vậy PTĐT cần tìm là: \(y=\frac{1}{2}x-3\)
b)
(d) vuông góc với \(y=-\frac{1}{2}x\Leftrightarrow a.\frac{-1}{2}=-1\Leftrightarrow a=2\)
(d) đi qua $A(1;-1)$ suy ra
\(-1=1.a+b\Leftrightarrow -1=a+b=2+b\Leftrightarrow b=-3\)
Vậy PTĐT cần tìm là \(y=2x-3\)
c)
(d) song song với \(y=-2x+3\Rightarrow a=-2\)
(d) đi qua $B(-2;1)$ suy ra \(1=-2a+b\Leftrightarrow 1=(-2)(-2)+b\)
\(\Leftrightarrow b=-3\)
Vậy PTĐT cần tìm là: \(y=-2x-3\)
d)
(d) vuông góc với \(y=2x+1\Rightarrow a.2=-1\Leftrightarrow a=\frac{-1}{2}\)
(d) đi qua điểm $C(1;3)$ suy ra:
\(3=1.a+b\Leftrightarrow 3=\frac{-1}{2}+b\Leftrightarrow b=\frac{7}{2}\)
Vậy PTĐT cần tìm là \(y=\frac{-1}{2}x+\frac{7}{2}\)
- Để 2 đường thẳng trên cắt nhau tại 1 điểm trên trục tung khi chúng có cùng tung độ gốc hay .
\(5-m=3+m\)
=> \(2m=2\)
=> \(m=1\)
Vậy để 2 đường thẳng trên cắt nhau tại 1 điểm trên trục tung thì m = 1 .
Đáp án đúng là C
Đường thẳng \(y = \dfrac{1}{2}x + 3\) có hệ số góc là \(a = \dfrac{1}{2}\); Đường thẳng \(y = - \dfrac{1}{2}x + 3\) có hệ số góc là \(a = \dfrac{{ - 1}}{2}\). Do đó, hai đường thẳng này cắt nhau.
Lại có: Đường thẳng \(y = \dfrac{1}{2}x + 3\) cắt trục tung tại điểm \(A\left( {0;3} \right)\); Đường thẳng \(y = - \dfrac{1}{2}x + 3\) cắt trục tung tại điểm \(A\left( {0;3} \right)\). Do đó, \(A\) là giao điểm của hai đường thẳng.
Hoành độ điểm \(A\) là \(x = 0\); tung độ của điểm \(A\) là \(y = 3\).
Xét pt hoành độ gđ của parabol và d có:
\(x^2=x+m-1\)
\(\Leftrightarrow x^2-x+1-m=0\) (1)
Để (P) và (d) cắt nhau tại hai điểm pb bên trái trục tung
\(\Leftrightarrow\) Pt (1) có hai nghiệm âm pb
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\S=1< 0\left(vl\right)\\P=1-m>0\end{matrix}\right.\)\(\Rightarrow\) Không tồn tại m để (d) cắt (P) tại hai điểm pb ở bên trái trục tung
Vậy...
Phương trình hoành độ giao điểm là:
\(x^2-x-m+1=0\)
a=1; b=-1; c=-m+1
\(\Delta=b^2-4ac\)
\(=\left(-1\right)^2-4\left(-m+1\right)\)
\(=1+4m-4\)
=4m-3
Để phương trình có hai nghiệm phân biệt thì Δ>0
\(\Leftrightarrow m>\dfrac{3}{4}\)
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-1\right)}{1}=1\\x_1x_2=\dfrac{c}{a}=\dfrac{-m+1}{1}=-m+1\end{matrix}\right.\)
Để (d) cắt (P) tại hai điểm phân biệt nằm ở bên trái trục tung thì
\(\left\{{}\begin{matrix}m>\dfrac{3}{4}\\x_1+x_2< 0\left(loại\right)\\x_1x_2>0\end{matrix}\right.\)
Vậy: \(m\in\varnothing\)
Để hai đường cắt nhau trên trục tung thì n+5=1 và m-3<>-2
=>n=-4 và m<>1
Để hai đường cắt nhau trên trục tung thì n+5=1 và m-3<>-2
=>n=-4 và m<>1
Xét phương trình hoành độ giao điểm của d 1 v à d 2 ta được:
x – 1 = 2 – 3 x ⇔ 4 x = 3 ⇒ x = 3 4
Thay x = 3 4 vào phương trình đường thẳng d 1 : y = x – 1 ta được:
y = 3 4 − 1 = − 1 4
Đáp án cần chọn là: D