K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2019

Chọn B

24 tháng 8 2018

Đáp án B

Sai lầm thường gặp: Tập xác định D = ℝ \ 3 .

Đạo hàm y ' = − 2 x − 3 2 ,0, ∀ x ∈ D ⇒  Hàm số nghịch biến trên ℝ \ 3 , hoặc làm số nghịch biến trên − ∞ ; 3 ∪ 3 ; + ∞ . Hàm số không có cực trị.

Tiệm cận đứng: x=3; tiệm cận ngang:  y=1. Đồ thị hàm số nhận giao điểm   I 3 ; 1  của hai đường tiệm cận làm tâm đối xứng.

Từ đó nhiều học sinh kết luận các mệnh đề 1 , 3 , 4  đúng và chọn ngay A.

Tuy nhiên đây là phương án sai.

Phân tích sai lầm:

Mệnh đề (1) sai, sửa lại: hàm số nghịch biến trên mỗi khoảng − ∞ ; 3  và 3 ; + ∞ . Học sinh cần nhớ rằng, ta chỉ học định nghĩa hàm số đồng biến (nghịch biến) trên khoảng, đoạn, nửa khoảng; chứ không có trên những khoảng hợp nhau.

Mệnh đề (2) sai. Đồ thị hàm số có một tiệm cận đứng là x=3, một tiệm cận ngang là y=1.

Mệnh đề 3 , 4  đúng.

27 tháng 10 2017

3 tháng 2 2018

Đáp án A

30 tháng 11 2017

Đáp án là C.

Các ý sau đây là đúng: 1;2;3

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Tập giá trị của hàm số\(y = \sin x\) là \(\left[ { - 1;1} \right]\)

b) Đồ thị hàm số \(y = \sin x\) nhận O là tâm đối xứng.

Như vậy hàm số \(y = \sin x\) là hàm số lẻ.

c) Bằng cách dịch chuyển đồ thị hàm số \(y = \sin x\) trên đoạn \(\left[ { - \pi ;\pi } \right]\) song song với trục hoành sang phải theo đoạn có độ dài \(2\pi \), ta nhận được đồ thị hàm số \(y = \sin x\) trên đoạn \(\left[ {\pi ;3\pi } \right]\)

Như vậy, hàm số \(y = \sin x\) có tuần hoàn .

d) Hàm số \(y = \sin x\) đồng biến trên mỗi khoảng \(\left( { - \frac{\pi }{2} + k2\pi ;\frac{\pi }{2} + k2\pi } \right)\), nghịch biến trên mỗi khoảng \(\left( {\frac{\pi }{2} + k2\pi ;\frac{{3\pi }}{2} + k2\pi } \right)\) với \(k \in Z\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)     Tập giá trị của hàm số \(y = \cot x\)là R

b)     Gốc tọa độ là tâm đối xứng của đồ thị hàm số

Hàm số \(y = \cot x\)là hàm số lẻ

c)     Bằng cách dịch chuyển đồ thị hàm số \(y = \cot x\) trên khoảng \(\left( {0;\pi } \right)\) song song với trục hoành sang phải theo đoạn có độ dài \(\pi \), ta nhận được \(y = \cot x\) trên khoảng \(\left( {\pi ;2\pi } \right)\)

Hàm số \(y = \cot x\) có tuần hoàn

d)     Hàm số \(y = \cot x\)nghịch biến trên mỗi khoảng \(\left( {k\pi ;\pi  + k\pi } \right),k \in Z\)

4 tháng 6 2019

Điểm thuộc đồ thị hàm số là A,C

Điểm không thuộc đồ thị hàm số là B

Chúc bạn học tốt

14 tháng 11 2021

Đáp án :

B. Đồ thị hàm số chẵn nhận trục hoành làm trục đối xứng.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)     Tập giá trị của hàm số \(y = \tan x\) là R

b)     Gốc tọa độ là tâm đối xứng của đồ thị hàm số

Như vậy, hàm số \(y = \tan x\)là hàm số lẻ

c)     Bằng cách dịch chuyển đồ thị hàm số \(y = \tan x\) trên khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) song song với trục hoành sang phải theo đoạn có độ dài π, ta nhận được đồ thị hàm số \(y = \tan x\) trên khoảng \(\left( {\frac{\pi }{2};\frac{{3\pi }}{2}} \right)\)

Như vậy, hàm số \(y = \tan x\) có tuần hoàn

d)     Hàm số \(y = \tan x\)đồng biến trên mỗi khoảng \(\left( { - \frac{\pi }{2} + k\pi ;\frac{\pi }{2} + k\pi } \right)\) với \(k \in Z\)

1: Theo đề, ta có:

-b/2*(-1)=5/2

=>-b/-2=5/2

=>b=5

2: y=-x^2+5x-4

loading...