K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2019

b: Để (d)//y=-3x+2 thì m-1=-3

=>m=-2

c:

PTHĐGĐ là:

(m-1)x-4=x-7

=>(m-2)x=-3

Để hai đường cắt nhau tại một điểm nằm bên trái trục tung thì m-1<>1 và -3/(m-2)<0

=>m<>2 và m-2>0

=>m>2

). Cho hàm số y = mx + 3.  a. Tìm m, biết rằng khi x = 1 thì y = 1. Vẽ đồ thị của hàm số với giá trị m tìm được.b. Viết phương trình đường thẳng (d) đi qua điểm M(0; -3) và song song với đường thẳng y = -2x + 3.). Cho hàm số y = mx + 3.  a. Tìm m, biết rằng khi x = 1 thì y = 1. Vẽ đồ thị của hàm số với giá trị m tìm được.b. Viết phương trình đường thẳng (d) đi qua điểm M(0; -3) và song song với đường...
Đọc tiếp

). Cho hàm số y = mx + 3.  

a. Tìm m, biết rằng khi x = 1 thì y = 1. Vẽ đồ thị của hàm số với giá trị m tìm được.

b. Viết phương trình đường thẳng (d) đi qua điểm M(0; -3) và song song với đường thẳng y = -2x + 3.

). Cho hàm số y = mx + 3.  

a. Tìm m, biết rằng khi x = 1 thì y = 1. Vẽ đồ thị của hàm số với giá trị m tìm được.

b. Viết phương trình đường thẳng (d) đi qua điểm M(0; -3) và song song với đường thẳng y = -2x + 3.). Cho hàm số y = mx + 3.  

a. Tìm m, biết rằng khi x = 1 thì y = 1. Vẽ đồ thị của hàm số với giá trị m tìm được.

b. Viết phương trình đường thẳng (d) đi qua điểm M(0; -3) và song song với đường thẳng y = -2x + 3.

). Cho hàm số y = mx + 3.  

a. Tìm m, biết rằng khi x = 1 thì y = 1. Vẽ đồ thị của hàm số với giá trị m tìm được.

b. Viết phương trình đường thẳng (d) đi qua điểm M(0; -3) và song song với đường thẳng y = -2x + 3.

1

a: Thay x=1 và y=1 vào (d), ta được:

m+3=1

hay m=-2

b: Vì (d)//y=-2x+3 nên a=-2

Vậy: (d): y=-2x+b

Thay x=0 và y=-3 vào (d), ta được:

b=-3

2 tháng 9 2021

Vẽ giúp mình vs ạ

 

Bài 1: Cho hàm số \(y=x^3+3x^2+mx+m-2\) (m là tham số) có đồ thị là (Cm). Xác định m để (Cm) có các điểm cực đại và cực tiểu nằm về hai phía đối với trục hoànhBài 2: Cho hàm số \(y=\dfrac{2x-2}{x+1}\) . Tìm m để đường thẳng d: \(y=2x+m\)  cắt đồ thị (C) tại 2 điểm phân biệt A, B sao cho AB=\(\sqrt{5}\)Bài 3: Cho hàm số \(y=\dfrac{1}{3}x^3-mx^2+2(m-1)x-3\) (m là tham số) có đồ thị là (Cm) . Xác định m để (Cm) có các...
Đọc tiếp

Bài 1: Cho hàm số \(y=x^3+3x^2+mx+m-2\) (m là tham số) có đồ thị là (Cm). Xác định m để (Cm) có các điểm cực đại và cực tiểu nằm về hai phía đối với trục hoành

Bài 2: Cho hàm số \(y=\dfrac{2x-2}{x+1}\) . Tìm m để đường thẳng d: \(y=2x+m\)  cắt đồ thị (C) tại 2 điểm phân biệt A, B sao cho AB=\(\sqrt{5}\)

Bài 3: Cho hàm số \(y=\dfrac{1}{3}x^3-mx^2+2(m-1)x-3\) (m là tham số) có đồ thị là (Cm) . Xác định m để (Cm) có các điểm cực đại và cực tiểu nằm về cùng một phía đối với trục tung

Bài 4: Cho hàm số \(y=-x^3+2(m-1)x^2-(m^2-3m+2)x-4\)

(m là tham số) có đồ thị là (Cm). Xác định m để (Cm) có các điểm cực đại và cực tiểu nằm về hai phía của trục tung

Bài 5: Cho hàm số \(y=-x^3+3x^2+3(m^2-1)x-3m^2-1\) (1). Tìm m để hàm số (1) có cực đại, cực tiểu, đồng thời các điểm cực đại và cực tiểu cùng với gốc tọa độ O tạo thành một tam giác vuông tại O

 

5
NV
18 tháng 7 2021

1.

Đồ thị hàm bậc 3 có 2 điểm cực trị nằm về 2 phía trục hoành khi và chỉ khi \(f\left(x\right)=0\) có 3 nghiệm phân biệt

\(\Leftrightarrow x^3+3x^2+mx+m-2=0\) có 3 nghiệm pb

\(\Leftrightarrow x^3+3x^2-2+m\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+2x-2\right)+m\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+2x+m-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x^2+2x+m-2=0\left(1\right)\end{matrix}\right.\)

Bài toán thỏa mãn khi (1) có 2 nghiệm pb khác -1

\(\Leftrightarrow\left\{{}\begin{matrix}1-2+m-2\ne0\\\Delta'=1-\left(m-2\right)>0\end{matrix}\right.\) 

\(\Leftrightarrow m< 3\)

NV
18 tháng 7 2021

2.

Pt hoành độ giao điểm:

\(\dfrac{2x-2}{x+1}=2x+m\)

\(\Rightarrow2x-2=\left(2x+m\right)\left(x+1\right)\)

\(\Leftrightarrow2x^2+mx+m+2=0\) (1)

d cắt (C) tại 2 điểm pb \(\Rightarrow\) (1) có 2 nghiệm pb

\(\Rightarrow\Delta=m^2-8\left(m+2\right)>0\Rightarrow\left[{}\begin{matrix}m>4+4\sqrt{2}\\m< 4-4\sqrt{2}\end{matrix}\right.\)

Khi đó, theo hệ thức Viet: \(\left\{{}\begin{matrix}x_A+x_B=-\dfrac{m}{2}\\x_Ax_B=\dfrac{m+2}{2}\end{matrix}\right.\)

\(y_A=2x_A+m\) ; \(y_B=2x_B+m\)

\(\Rightarrow AB^2=\left(x_A-x_B\right)^2+\left(y_A-y_B\right)^2=5\)

\(\Leftrightarrow\left(x_A-x_B\right)^2+\left(2x_A-2x_B\right)^2=5\)

\(\Leftrightarrow\left(x_A-x_B\right)^2=1\)

\(\Leftrightarrow\left(x_A+x_B\right)^2-4x_Ax_B=1\)

\(\Leftrightarrow\left(-\dfrac{m}{2}\right)^2-4\left(\dfrac{m+2}{2}\right)=1\)

\(\Leftrightarrow m^2-8m-20=0\Rightarrow\left[{}\begin{matrix}m=10\\m=-2\end{matrix}\right.\)

22 tháng 12 2021

a: Thay x=3 và y=0 vào (1), ta được:

\(6-3m=0\)

hay m=2

a: Thay x=1 và y=1 vào (d), ta được:

m+3=1

hay m=-2

b: Vì (d)//y=-2x+3 nên a=-2

Vậy: (d): y=-2x+b

Thay x=0 và y=-3 vào (d), ta được:

b=-3

26 tháng 3 2019

Chọn A

3 tháng 6 2021

1D

2A

24 tháng 2 2019

Ta có y’=3x2-6x-m

Để đồ thị hàm số đã cho có hai điểm cực trị khi  phương trình y’=0  có hai nghiệm phân biệt  ⇔ ∆ ' = 9 + 3 m > 0 ⇔ m > - 3

Ta có 

đường thẳng đi qua hai điểm cực trị  Avà  B là 

Đường thẳng d; x+4y-5=0 có một VTPT là  n d → = ( 1 ; 4 ) .

Đường thẳng  có một VTCP là  n ∆ → = ( 2 m 3 + 2 ;   1 )

Ycbt suy ra:

Suy ra 

thỏa mãn

Chọn A.