Cho a > b. So sánh: 2a + 10 và 2b + 9
A. 2a + 10 < 2b + 9
B. 2a +10 = 2b + 9
C. 2a + 10 > 2b + 9
D. Chưa thể kết luận
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sẵn tiện mk chỉ cho bn luôn dạng này nhé.
Phân tích:
Với \(\alpha,\beta,\gamma>0\) thỏa \(\alpha< 2,\beta< 3,\gamma< 4\) ta có:
\(A=2a+3b+4c+\dfrac{3}{a}+\dfrac{9}{2b}+\dfrac{4}{c}\)
\(=\left[\left(2-\alpha\right)a+\dfrac{3}{a}\right]+\left[\left(3-\beta\right)b+\dfrac{9}{2b}\right]+\left[\left(4-\gamma\right)c+\dfrac{4}{c}\right]+\left(\alpha a+\beta b+\gamma c\right)\)
\(\ge2\sqrt{3.\left(2-\alpha\right)}+2\sqrt{\dfrac{9}{2}.\left(3-\beta\right)}+2\sqrt{4.\left(4-\gamma\right)}+\left(\alpha a+\beta b+\gamma c\right)\)
Chọn \(\alpha,\beta,\gamma\) (thỏa đk trên) sao cho:
\(\left\{{}\begin{matrix}\left(2-\alpha\right)a=\dfrac{3}{a}\\\left(3-\beta\right)b=\dfrac{9}{2b}\\\left(4-\gamma\right)c=\dfrac{4}{c}\\\alpha=\dfrac{\beta}{2}=\dfrac{\gamma}{3}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}a=\sqrt{\dfrac{3}{2-\alpha}}\\b=\sqrt{\dfrac{9}{2\left(3-\beta\right)}}\\c=\sqrt{\dfrac{4}{\left(4-\gamma\right)}}\\\alpha=\dfrac{\beta}{2}=\dfrac{\gamma}{3}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}a=\sqrt{\dfrac{3}{2-\alpha}}\\b=\sqrt{\dfrac{9}{6-4\alpha}}\\c=\sqrt{\dfrac{4}{4-3\alpha}}\\\alpha=\dfrac{\beta}{2}=\dfrac{\gamma}{3}\end{matrix}\right.\)
Ta có: \(a+2b+3c\ge20\). Xác định điểm rơi: \(a+2b+3c=20\)
\(\Rightarrow\sqrt{\dfrac{3}{2-\alpha}}+2\sqrt{\dfrac{9}{6-4\alpha}}+3\sqrt{\dfrac{4}{4-3\alpha}}=20\)
Giải ra ta có \(\alpha=\dfrac{5}{4}\Rightarrow\beta=\dfrac{5}{2};\gamma=\dfrac{15}{4}\)
Lời giải:
Ta có: \(A=2a+3b+4c+\dfrac{3}{a}+\dfrac{9}{2b}+\dfrac{4}{c}\)
\(=\left(\dfrac{3a}{4}+\dfrac{3}{a}\right)+\left(\dfrac{b}{2}+\dfrac{9}{2b}\right)+\left(\dfrac{c}{4}+\dfrac{4}{c}\right)+\left(\dfrac{5a}{4}+\dfrac{5b}{2}+\dfrac{15c}{4}\right)\)
\(\ge^{Cauchy}2\sqrt{\dfrac{3a}{4}.\dfrac{3}{a}}+2\sqrt{\dfrac{b}{2}.\dfrac{9}{2b}}+2\sqrt{\dfrac{c}{4}.\dfrac{4}{c}}+\dfrac{5}{4}\left(a+2b+3c\right)\)
\(=3+3+2+\dfrac{5}{4}\left(a+2b+3c\right)\)
\(\ge8+\dfrac{5}{4}.20=33\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\dfrac{3a}{4}=\dfrac{3}{a}\\\dfrac{b}{2}=\dfrac{9}{2b}\\\dfrac{c}{4}=\dfrac{4}{c}\\a+2b+3c=20\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=3\\c=4\end{matrix}\right.\)
Vậy \(MinA=33\), đạt được khi \(a=2;b=3;c=4\)
c)2a+2b=2a+b
<=>2a+2b-2a-b=0
<=>\(\left\{\begin{matrix}a\in Z\\b=0\end{matrix}\right.\)
Câu này bạn nên xem lại đề vì mình thấy nó dễ bất thường quá
Chữa lại câu c sau khi bạn Khánh sử đề nha
\(2^a+2^b=2^{a+b}\)
\(\Leftrightarrow2^a+2^b=2^a.2^b\)
\(\Leftrightarrow2^a\left(2^b-1\right)-\left(2^b-1\right)=1\)
\(\Leftrightarrow\left(2^a-1\right)\left(2^b-1\right)=1\)
Ta có bảng sau:
\(2^a-1\) | 1 | -1 |
\(2^b-1\) | 1 | -1 |
a | 1 | Không có a thỏa mãn |
b | 1 | Không có b thỏa mãn |
Vậy a=1; b=1
Lớp 2A có số bạn là:
9x5=45(bạn)
Lớp 2B có số bạn là:
4x10=40(bạn)
Số bạn cả 2 lớp có là:
40+45=85(bạn)
Đáp số:a,45 bạn
b.40 bạn
c,85 bạn
* Ta có: a > b nên 2a > 2b
Suy ra: 2a + 9 >> 2b + 9 (1)
* Lại có: 10 > 9 nên 2a + 10 > 2a + 9 (2)
Từ (1) và (2) suy ra: 2a+ 10 > 2b + 9
Chọn đáp án C