Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Biến đổi $A$ :
\(A=a+b+c+\frac{3}{a}+\frac{9}{2b}+\frac{4}{c}=\frac{1}{4}(a+2b+3c)+\left(\frac{3a}{4}+\frac{3}{a}\right)+\left (\frac{b}{2}+\frac{9}{2b}\right)+\left (\frac{c}{4}+\frac{4}{c}\right)\)
Ta có: \(\frac{1}{4}(a+2b+3c)\geq \frac{20}{4}=5\)
Áp dụng BĐT AM-GM: \(\left\{\begin{matrix} \frac{3a}{4}+\frac{3}{a}\geq 3\\ \frac{b}{2}+\frac{9}{2b}\geq 3\\ \frac{c}{4}+\frac{4}{c}\geq 2\end{matrix}\right.\)
Do đó \(A\geq 5+3+3+2=13\) hay \(A_{\min}=13\)
Dấu bằng xảy ra khi \(\left\{\begin{matrix} a=2\\ b=3\\ c=4\end{matrix}\right.\)
Mấu chốt của bài toán là cách tìm điểm rơi.
\(P=\frac{2a+3b+3c-1}{2015+a}+\frac{3a+2b+3c}{2016+b}+\frac{3a+3b+2c+1}{2017+c}\)
\(=\frac{6047-a}{2015+a}+\frac{6048-b}{2016+b}+\frac{6049-c}{2017+c}\)
\(=\frac{8062}{2015+a}+\frac{8064}{2016+b}+\frac{8066}{2017+c}-3\)
\(\ge\frac{\left(\sqrt{8062}+\sqrt{8064}+\sqrt{8066}\right)^2}{2015+2016+2017+a+b+c}-3=\frac{\left(\sqrt{8062}+\sqrt{8064}+\sqrt{8066}\right)^2}{8064}-3\)
Dấu = xảy ra khi ....
a^3/b +a^3/b +b^2 >=3.a^2
=>2a^3/b +b^2>=3a^2
tuong tu
2b^3/c +c^2 >=3.b^2
2c^3/a +a^2 >=3.c^2
cog lai ta dc
2(a^3/b+b^3/c+c^3/a) +(a^2+b^2+c^2) >=3.(a^2+b^2+c^2)
=>a^3/b+b^3/c+c^3/a >=a^2+b^2+c^2
mat khc
a^2+b^2+c^2>=ab+bc+ca
nen
a^3/b+b^3/c+c^3/a >=ab+bc+ca
dau = xay ra khi a=b=c
k nha
a^3/b +a^3/b +b^2 >=3.a^2
=>2a^3/b +b^2>=3a^2
tuong tu
2b^3/c +c^2 >=3.b^2
2c^3/a +a^2 >=3.c^2
cog lai ta dc
2(a^3/b+b^3/c+c^3/a) +(a^2+b^2+c^2) >=3.(a^2+b^2+c^2)
=>a^3/b+b^3/c+c^3/a >=a^2+b^2+c^2
mat khc
a^2+b^2+c^2>=ab+bc+ca
nen
a^3/b+b^3/c+c^3/a >=ab+bc+ca
dau = xay ra khi a=b=c
Sẵn tiện mk chỉ cho bn luôn dạng này nhé.
Phân tích:
Với \(\alpha,\beta,\gamma>0\) thỏa \(\alpha< 2,\beta< 3,\gamma< 4\) ta có:
\(A=2a+3b+4c+\dfrac{3}{a}+\dfrac{9}{2b}+\dfrac{4}{c}\)
\(=\left[\left(2-\alpha\right)a+\dfrac{3}{a}\right]+\left[\left(3-\beta\right)b+\dfrac{9}{2b}\right]+\left[\left(4-\gamma\right)c+\dfrac{4}{c}\right]+\left(\alpha a+\beta b+\gamma c\right)\)
\(\ge2\sqrt{3.\left(2-\alpha\right)}+2\sqrt{\dfrac{9}{2}.\left(3-\beta\right)}+2\sqrt{4.\left(4-\gamma\right)}+\left(\alpha a+\beta b+\gamma c\right)\)
Chọn \(\alpha,\beta,\gamma\) (thỏa đk trên) sao cho:
\(\left\{{}\begin{matrix}\left(2-\alpha\right)a=\dfrac{3}{a}\\\left(3-\beta\right)b=\dfrac{9}{2b}\\\left(4-\gamma\right)c=\dfrac{4}{c}\\\alpha=\dfrac{\beta}{2}=\dfrac{\gamma}{3}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}a=\sqrt{\dfrac{3}{2-\alpha}}\\b=\sqrt{\dfrac{9}{2\left(3-\beta\right)}}\\c=\sqrt{\dfrac{4}{\left(4-\gamma\right)}}\\\alpha=\dfrac{\beta}{2}=\dfrac{\gamma}{3}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}a=\sqrt{\dfrac{3}{2-\alpha}}\\b=\sqrt{\dfrac{9}{6-4\alpha}}\\c=\sqrt{\dfrac{4}{4-3\alpha}}\\\alpha=\dfrac{\beta}{2}=\dfrac{\gamma}{3}\end{matrix}\right.\)
Ta có: \(a+2b+3c\ge20\). Xác định điểm rơi: \(a+2b+3c=20\)
\(\Rightarrow\sqrt{\dfrac{3}{2-\alpha}}+2\sqrt{\dfrac{9}{6-4\alpha}}+3\sqrt{\dfrac{4}{4-3\alpha}}=20\)
Giải ra ta có \(\alpha=\dfrac{5}{4}\Rightarrow\beta=\dfrac{5}{2};\gamma=\dfrac{15}{4}\)
Lời giải:
Ta có: \(A=2a+3b+4c+\dfrac{3}{a}+\dfrac{9}{2b}+\dfrac{4}{c}\)
\(=\left(\dfrac{3a}{4}+\dfrac{3}{a}\right)+\left(\dfrac{b}{2}+\dfrac{9}{2b}\right)+\left(\dfrac{c}{4}+\dfrac{4}{c}\right)+\left(\dfrac{5a}{4}+\dfrac{5b}{2}+\dfrac{15c}{4}\right)\)
\(\ge^{Cauchy}2\sqrt{\dfrac{3a}{4}.\dfrac{3}{a}}+2\sqrt{\dfrac{b}{2}.\dfrac{9}{2b}}+2\sqrt{\dfrac{c}{4}.\dfrac{4}{c}}+\dfrac{5}{4}\left(a+2b+3c\right)\)
\(=3+3+2+\dfrac{5}{4}\left(a+2b+3c\right)\)
\(\ge8+\dfrac{5}{4}.20=33\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\dfrac{3a}{4}=\dfrac{3}{a}\\\dfrac{b}{2}=\dfrac{9}{2b}\\\dfrac{c}{4}=\dfrac{4}{c}\\a+2b+3c=20\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=3\\c=4\end{matrix}\right.\)
Vậy \(MinA=33\), đạt được khi \(a=2;b=3;c=4\)