K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2018

Giải sách bài tập Toán 11 | Giải sbt Toán 11

 Vì AD ⊥ (ABC) nên AD ⊥ BC

 Ngoài ra BC ⊥ AB nên ta có BC ⊥ (ABD)

 Vì mặt phẳng (BCD) chứa BC mà BC ⊥ (ABD) nên ta suy ra mặt phẳng (BCD) vuông góc với mặt phẳng (ABD).

 Hai mặt phẳng (BCD) và (ABD) vuông góc với nhau và có giao tuyến là BD. Đường thẳng AH thuộc mặt phẳng (ABD) và vuông góc với giao tuyến BD nên AH vuông góc với mặt phẳng (BCD).

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

1 tháng 5 2017

Giải bài 3 trang 113 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 3 trang 113 sgk Hình học 11 | Để học tốt Toán 11

31 tháng 3 2017

Giải bài 3 trang 113 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 3 trang 113 sgk Hình học 11 | Để học tốt Toán 11

5 tháng 8 2016

1)

undefined

a) Ta có: góc BAD+góc CAE+góc BAC=180 độ

Mà góc BAC=90 độ nên góc BAD+ góc CAE=90 độ (1)

Vì tam giác ACE vuông tại E nên góc ACE+góc CAE=90 độ(2)

Từ (1) và (2) => góc BAD= góc ACE

Xét tam giác ABD và tam giác ACE có:

góc ADB=góc AED=90 độ

AB=AC ( vì tam giác ABC vuông cân tại A)

góc BAD=góc ACE (cmt)

=> tam giác ABD=tam giác ACE (cạnh huyền-góc nhọn)

b) Theo câu a) Tam giác ABD=tam giác ACE

=> DA=EC và BD=AE

Mà DE=DA+AE nên DE=EC+BD

 

 

5 tháng 8 2016

Cảm ơn bạn nhayeu

 

a: Xét tứ giác ABDC có góc BAC+góc BDC=180 độ

=>ABDC là tư giác nội tiếp

=>góc ABD+góc ACD=180 độ

c: góc CAD=góc CBD

góc BAD=góc BCD

mà góc CBD=góc BCD

nên góc CAD=góc BAD

=>AD là phân giác của góc BAC

d: ΔABC vuông tại A
mà AM là trung tuyến

nên MA=CB/2

ΔBCD vuông tại D

mà DM là trung tuyến

nen MD=CB/2

=>MA=MD

1 tháng 8 2017

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11

b) AH ⊥ SB mà SB là giao tuyến của hai mặt phẳng vuông góc là (SBC) và (SAB) nên AH ⊥ (SBC).

c) Xét tam giác vuông SAB với đường cao AH ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

d) Vì OK ⊥ (SBC) mà AH ⊥ (SBC) nên OK // AH, ta có K thuộc CH.

OK = AH/2 = (a√6)/6.

21 tháng 8 2023

Để chứng minh rằng BD = CE và BD vuông góc với CE, ta sẽ sử dụng một số kiến thức về tam giác và hình học.

a) Để chứng minh BD = CE, ta sẽ sử dụng tính chất của tam giác vuông. Vì AD = AC và góc BAD = góc CAE = 90 độ, nên tam giác ABD và tam giác ACE là hai tam giác vuông cân. Do đó, ta có AB = AC và góc ABD = góc ACE. Từ đó, ta có thể kết luận rằng BD = CE.

b) Để chứng minh BD vuông góc với CE, ta sẽ sử dụng tính chất của đường thẳng vuông góc. Vì AD vuông góc AC và AE vuông góc AB, nên ta có thể kết luận rằng đường thẳng BD là đường thẳng vuông góc với đường thẳng CE.

Với các bước chứng minh trên, ta đã chứng minh được rằng BD = CE và BD vuông góc với CE trong tam giác ABC nhọn.

31 tháng 7 2018

Đáp án D

Hướng dẫn giải:

Y C B T ⇒ ∆ C J D  vuông cân tại J