Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\hept{\begin{cases}\left(3x-33\right)^{2014}\ge0\\\left|y-7\right|^{2015}\ge0\end{cases}}\)\(\Rightarrow\left(3x-33\right)^{2014}+\left|y-7\right|^{2015}\ge0\)
Kết hợp với giả thiết chỉ có \(\left(3x-33\right)^{2014}+\left|y-7\right|^{2015}=0\) đúng
\(\Rightarrow\hept{\begin{cases}3x-33=0\\y-7=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=11\\y=7\end{cases}}\)
Vậy...................
\(\left(3x-33\right)^{2014}-\left(\left|y-7\right|\right)^{2015}\le0\)
Ta có \(\left(3x-33\right)^{2014}\ge0\)với mọi gt \(x\in R\)
và \(\left(\left|y-7\right|\right)^{2015}\ge0\)với mọi gt \(x\in R\)
=> \(\left(3x-33\right)^{2014}-\left(\left|y-7\right|\right)^{2015}\ge0\)với mọi gt \(x\in R\)
Mà \(\left(3x-33\right)^{2014}-\left(\left|y-7\right|\right)^{2015}\le0\)
=> \(\left(3x-33\right)^{2014}-\left(\left|y-7\right|\right)^{2015}=0\)
=> \(\hept{\begin{cases}\left(3x-33\right)^{2014}=0\\\left(\left|y-7\right|\right)^{2015}=0\end{cases}}\)=> \(\hept{\begin{cases}3x-33=0\\y-7=0\end{cases}}\)=> \(\hept{\begin{cases}3x=33\\y=7\end{cases}}\)=> \(\hept{\begin{cases}x=11\\y=7\end{cases}}\)
Ta có:\(\left(3x-33\right)^{2014}\ge0,\left|y-7\right|^{2015}\ge0\Rightarrow\left(3x-33\right)^{2014}+\left|y-7\right|^{2015}\ge0\)
Mà VP\(\le0\)
\(\Rightarrow\left(3x-33\right)^{2014}+\left|y-7\right|^{2015}=0\)
\(\Leftrightarrow\left(3x-33\right)^{2014}=0\Leftrightarrow3x-33=0\Leftrightarrow3x=33\Leftrightarrow x=11\)
\(\Leftrightarrow\left|y-7\right|^{2015}=0\Leftrightarrow\left|y-7\right|=0\Leftrightarrow y-7=0\Leftrightarrow y=7\)
Vậy x=11;y=7
a) 3/4+1/4:x =-3
=> 1/4:x = -3 - 3/4 = -15/4
=> x = 1/4 : (-15/4)
=> x= -1/15
b) |3x-5|-7 = -3
=> |3x-5| = 4
=> 3x-5 = 4 hoac -4
=> x = 3 hoac 1/3
(3/8 :2) :x =9/8 ,tìm số hữu tỉ mọi người giải giúp mình với
Bài 1:
Ta có: \(3x=2y\)
nên \(\dfrac{x}{2}=\dfrac{y}{3}\)
mà x+y=-15
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{-15}{5}=-3\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{2}=-3\\\dfrac{y}{3}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-9\end{matrix}\right.\)
Vậy: (x,y)=(-6;-9)
Bài 2:
a) Ta có: \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)
mà x+y-z=20
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y-z}{4+3-5}=\dfrac{20}{2}=10\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{4}=10\\\dfrac{y}{3}=10\\\dfrac{z}{5}=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40\\y=30\\z=50\end{matrix}\right.\)
Vậy: (x,y,z)=(40;30;50)
Ta có : \(\frac{2}{3x}-\frac{3}{12}=\frac{4}{5}-\left(\frac{7}{x}-2\right)\)
<=> \(\frac{2}{3x}-\frac{1}{4}=\frac{4}{5}-\frac{7}{x}+2\)
<=> \(\frac{2}{3x}-\frac{21}{3x}=\frac{1}{4}+\frac{4}{5}+2\)
<=> \(\frac{19}{3x}=\frac{5}{20}+\frac{16}{20}+\frac{40}{20}\)
<=> \(\frac{19}{3x}=\frac{61}{20}\)
\(\Leftrightarrow183x=380\)
Tự lm nốt nhé
Hc tốt
a, \(\frac{3x-7}{x-2}=3x+\frac{1}{x-2}\)
Để đạt giá trị nguyên thì 1 chia hết cho X - 2
\(\Rightarrow x-2\)là ước của 1 \(\in\left\{-1,1\right\}\)
X - 2 = -1 \(\Rightarrow\)x = 1
X - 2 = 1 \(\Rightarrow\)x = 3
Vậy x = 1 hoặc x= 3 thì số hữu tỉ đạt giá trị nguyên
b) \(\frac{x^2+4x+7}{x+2}=\frac{\left(x+2\right)^2+3}{x+2}=x+2+\frac{3}{x+2}\)
Dễ thấy x nguyên nên x + 2 nguyên.
\(\Rightarrow\)\(\frac{x^2+4x+7}{x+2}\inℤ\Leftrightarrow x\frac{3}{x+2}\in Z\)
\(\Rightarrow x+2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Lập bảng:
\(x+2\) | \(1\) | \(-1\) | \(3\) | \(-3\) |
\(x\) | \(-1\) | \(-3\) | \(1\) | \(-5\) |
Vậy \(x\in\left\{-5;-3;-1;1\right\}\)
(x−5)2=(1−3x)2(x−5)2=(1−3x)2
⇔x2−10x+25=1−6x+9x2⇔x2−10x+25=1−6x+9x2
⇔8x2+4x−24=0⇔8x2+4x−24=0
⇔4(2x2+x−6)=0⇔4(2x2+x−6)=0
⇔2x2+x−6=0⇔2x2+x−6=0
⇔2x2+4x−3x−6=0⇔2x2+4x−3x−6=0
⇔2x(x+2)−3(x+2)=0⇔2x(x+2)−3(x+2)=0
⇔(x+2)(2x−3)=0⇔(x+2)(2x−3)=0
⇔[x+2=02x−3=0⇔⎡⎣x=−2x=32⇔[x+2=02x−3=0⇔[x=−2x=32
Vậy.....
cảm ơn