K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2017

Số cách rút ra 13 con bài là Giải sách bài tập Toán 11 | Giải sbt Toán 11 . Như vậy n(Ω) = Giải sách bài tập Toán 11 | Giải sbt Toán 11

Kí hiệuA : "Trong 13 con bài có 4 con pích, 3 con rô, 3 con cơ và 3 con nhép".

Ta có Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy Giải sách bài tập Toán 11 | Giải sbt Toán 11

18 tháng 5 2017

Số cách rút ra 13 con bài là : \(C_{52}^{13}\). Như vậy \(n\left(\Omega\right)=C_{52}^{13}\)

Kí hiệu A : " Trong 13 con bài có 4 con pích, 3 con rô, 3 con cơ và 3 con nhép"

Ta có :

\(n\left(A\right)=C_{13}^4.C_9^3.C_6^3=\dfrac{13!}{4!\left(3!\right)^3}\)

Vậy :

\(P\left(A\right)=\dfrac{13!}{4!\left(3!\right)^3.C^{13}_{52}}\approx0,000002\)

9 tháng 12 2016

Gọi A là biến cố: "Trong 5 quân bài lấy ra phải có quân 2 rô, quân 3 pích, quân 6 cơ, quân 10 nhép và quân K cơ''.
=> n(A) =1
Vì lấy quân 2 rô có 1 cách.
Lấy quân 3 pích có 1 cách.
Lấy quân 6 cơ có 1 cách.
Lấy quân 10 nhép có 1 cách.
Lấy quân K cơ có 1 cách.
\(\Rightarrow\) P(A) = 1/C5 (52)

19 tháng 12 2020

Không gian mẫu: \(n(\Omega)=C^3_{52}=22100\)

Rút được 2 con K từ 4 con: \(C^2_4=6\)

Rút con còn lại từ 52-4=48 (lá còn lại): \(C_{48}^1=48\)

\(\Rightarrow n\left(A\right)=6.48=288\)

\(\Rightarrow p\left(A\right)=\dfrac{288}{22100}=\dfrac{72}{5525}\)

14 tháng 11 2019

Kí hiệu Ak: “ lần thứ k lấy được con át” k≥1 thì P(A1)=4/52=1/13

b. ta cần tính :

Chọn C

19 tháng 7 2018

Không gian mẫu là kết quả của việc chọn ngẫu nhiên 4 con trong số 52 con

Giải bài tập Đại số 11 | Để học tốt Toán 11

a. Đặt A : « Cả 4 con lấy ra đều là át »

⇒ n(A) = 1

Giải bài tập Đại số 11 | Để học tốt Toán 11

b. + B : « Không có con át nào trong 4 con khi lấy ra »

⇒ B là kết quả của việc chọn ngẫu nhiên 4 con trong số 48 con còn lại

Giải bài tập Đại số 11 | Để học tốt Toán 11

c. C: “Rút được 2 con át và 2 con K”.

Giải bài tập Đại số 11 | Để học tốt Toán 11

9 tháng 4 2017

Phép thử T được xét là: "Từ cỗ bài tú lơ khơ 52 con bài, rút ngẫu nhiên 4 con bài".

Mỗi kết quả có thể có là một tổ hợp chập 4 của 52 con bài. Do đó số các kết quả có thể có của phép thử T là n(Ω) = C452 = = 270725.

Vì rút ngẫu nhiên nên các kết quả có thể có là đồng khả năng.

a) Gọi biến cố A: "Rút được bốn con át". Ta có, số kết quả có thể có thuận lợi cho A là n(A) = 1. Suy ra P(A) = ≈ 0,0000037.

b) Gọi biến cố B: "Rút được ít nhất một con át". Ta có

= "Rút được 4 con bài đều không là át". Mỗi kết quả có thể thuận lợi cho là một tổ hợp chập 4 của 48 con bài không phải là át. Suy ra số các kết quả có thể có thuận lợi cho là C448 = = 194580. Suy ra P() = ≈ 0,7187.

Qua trên ta có P(B) = 1 - P() ≈ 0,2813.

c) Gọi C là biến cố: "Rút được hai con át và hai con K".

Mỗi kết quả có thể có thuận lợi cho C là một tổ hợp gồm 2 con át và 2 con K. Vận dụng quy tắc nhân tính được số các kết quả có thể có thuận lợi cho C là

n(C) = C24 C24 = 6 . 6 = 36.

Suy ra P(C) = ≈ 0,000133.



10 tháng 6 2017

5 tháng 2 2018