Trong không gian Oxyz cho tam giác ABC có tọa độ các đỉnh là:
A(a; 0; 0), B(0; b; 0), C(0; 0; c)
Chứng minh rằng tam giác ABC có ba góc nhọn.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(A\in\left(Oxz\right)\Rightarrow A\left(x;0;z\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{CA}=\left(x+1;-1;z+1\right)\\\overrightarrow{CB}=\left(-1;2;2\right)\end{matrix}\right.\)
Theo đề bài: \(\left\{{}\begin{matrix}\overrightarrow{CA}.\overrightarrow{CB}=0\\CA=CB\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-\left(x+1\right)-2+2\left(z+1\right)=0\\\left(x+1\right)^2+1+\left(z+1\right)^2=1+4+4\end{matrix}\right.\)
Hi vọng là bạn tự giải được hệ pt rất cơ bản này
Ta có : \(\overrightarrow{AB}=\left(-a;b;0\right)\)
và \(\overrightarrow{AC}=\left(-a;0;c\right)\)
Vì \(\overrightarrow{AB}.\overrightarrow{AC}=a^2>0\) nên góc \(\widehat{BAC}\) là góc nhọn
Lập luận tương tự chứng minh được các góc \(\widehat{B}\) và \(\widehat{C}\) cũng là góc nhọn
Đáp án B
Phương pháp
Đường thẳng d có VTCP u → và đi qua điểm M
Cách giải
Ta có
Ta có: AB → = (−a; b; 0) và AC → = (−a; 0; c)
Vì AB → . AC → = a 2 > 0 nên góc ∠ BAC là góc nhọn.
Lập luận tương tự ta chứng minh được các góc ∠ B và ∠ C cũng là góc nhọn.